Je suis Charlie

Autres trucs

Accueil

Seulement les RFC

Seulement les fiches de lecture

Ève

RFC 8085: UDP Usage Guidelines

Date de publication du RFC : Mars 2017
Auteur(s) du RFC : L. Eggert (NetApp), G. Fairhurst (University of Aberdeen), G. Shepherd (Cisco Systems)
Réalisé dans le cadre du groupe de travail IETF tsvwg
Première rédaction de cet article le 9 mars 2017


La grande majorité des applications Internet tourne sur le protocole de transport TCP. Mais son concurrent UDP, normalisé dans le RFC 768, prend de l'importance avec le multimédia et les jeux en ligne pour lesquels il est souvent bien adapté. Contrairement à TCP, UDP ne fournit aucun mécanisme de contrôle de la congestion. C'est donc aux applications de fournir ce contrôle, suivant les règles expliquées par ce RFC. (Qui parle surtout de congestion mais aussi d'autres sujets importants pour ceux qui utilisent UDP, comme la taille des messages ou comme les sommes de contrôle.) Il remplace le RFC 5405.

UDP est apprécié pour certaines applications car il est simple et léger et le fait qu'il ne garantisse pas l'acheminement de la totalité des paquets n'est pas forcément un problème dans les applications multimédia : si on perd quelques secondes d'une communication téléphonique RTP, il vaut mieux passer à la suite que de perdre du temps à la retransmettre comme le ferait TCP. Mais UDP ne fournit pas non plus de contrôle de la congestion. Une application UDP enthousiaste peut envoyer des paquets au débit maximum permis, saturant tous les liens situés en aval. (Il ne faut pas juste tenir compte de la capacité du lien auquel on est connecté, mais de celle du chemin complet. L'exemple du RFC, avec un chemin à seulement 56 kb/s, que cinq paquets UDP de 1 500 octets par seconde saturent, n'est pas invraisemblable.) Protéger le réseau de la congestion est pourtant nécessaire (RFC 2914 et RFC 7567), à la fois pour assurer que le réseau continue à être utilisable et également pour assurer une certaine équité entre les différents flux de données, pour éviter qu'une seule application gourmande ne monopolise le réseau pour elle. (Ceci concerne l'Internet public. Si on est dans un environnement fermé, utilisant TCP/IP mais où la capacité réseau, et son usage, sont contrôlés, le problème est évidemment différent. Voir notamment la section 3.6.)

UDP ne faisant pas ce contrôle de congestion, il faut bien que l'application le fasse et, pour cela, qu'elle mette en œuvre les conseils de ce RFC. (Notre RFC contient également des conseils pour d'autres aspects de l'utilisation d'UDP que le contrôle de congestion : mais c'est le plus important.)

Le gros du RFC est dans la section 3 qui détaille ces conseils (la section 7 contient un excellent résumé sous forme d'un tableau des conseils à suivre). Le premier est qu'il vaut peut-être mieux ne pas utiliser UDP. Beaucoup de développeurs d'applications pensent à UDP en premier parce qu'il est simple et facile à comprendre et qu'il est « plus rapide que TCP ». Mais, rapidement, ces développeurs se rendent compte qu'ils ont besoin de telle fonction de TCP, puis de telle autre, ils les mettent en œuvre dans leur application et arrivent à une sorte de TCP en moins bien, d'avantage bogué et pas plus rapide. Notre RFC conseille donc d'abord de penser aux autres protocoles de transport comme TCP (RFC 793), DCCP (RFC 4340) ou SCTP (RFC 4960). Ces protocoles sont d'autant plus intéressants qu'ils ont souvent fait l'objet de réglages soigneux depuis de nombreuses années et qu'il est donc difficile à un nouveau programme de faire mieux. D'autant plus qu'il existe souvent des réglages spécifiques pour les adapter à un usage donné. Par exemple, on peut dire à TCP de donner la priorité à la latence (paramètre TCP_NODELAY de setsockopt) ou bien au débit.

Si on ne suit pas ces sages conseils, et qu'on tient à se servir d'UDP, que doit-on faire pour l'utiliser intelligemment ? La section 3.1 couvre le gros morceau, le contrôle de congestion. Celui-ci doit être pris en compte dès la conception de l'application. Si cette dernière fait de gros transferts de données (section 3.1.2, c'est le cas de RTP, RFC 3550), elle doit mettre en œuvre TFRC, tel que spécifié dans le RFC 5348, donc faire à peu près le même travail que TCP. Et ce mécanisme doit être activé par défaut.

Si l'application transmet peu de données (section 3.1.3), elle doit quand même faire attention et le RFC demande pas plus d'un datagramme par RTT, où le RTT est un cycle aller-retour avec la machine distante (si le calcul n'est pas possible, le RFC demande une durée de trois secondes). L'application doit également détecter les pertes de paquet pour ralentir son rythme si ces pertes - signe de congestion - sont trop fréquentes.

Si l'application est bi-directionnelle (le cas de loin le plus fréquent), le contrôle de la congestion doit se faire indépendamment dans les deux directions.

Notez que se retenir d'envoyer des paquets n'est pas le seul moyen pour une application d'éviter la congestion. Elle peut aussi (si l'API utilisée le permet) se servir d'ECN (RFC 3168) pour transmettre l'information qui permettra de réguler le trafic.

Enfin, le RFC demande (section 3.1.10) un mécanisme de « disjoncteur » (circuit breaker, cf. RFC 8084 ou bien RFC 8083 pour l'exemple spécifique de RTP). C'est un mécanisme de dernier recours pour couper la communication en cas de risque d'effondrement du réseau.

Le cas où l'application est un tunnel au-dessus d'UDP est également couvert (section 3.1.11). C'est par exemple le cas du protocole GRE quand il tourne sur UDP (RFC 8086).

En suivant toutes ces règles, l'application gère proprement la congestion. Et le reste ? La section 3.2 fournit des pistes sur la gestion de la taille des paquets. La charge utile d'un paquet UDP peut théoriquement faire 65 507 octets en IPv4 et 65 527 en IPv6. Mais c'est théorique. En pratique, la fragmentation marche mal sur l'Internet, et notre RFC conseille de rester en dessous de la MTU, et d'utiliser la découverte de la MTU du chemin spécifiée dans des RFC comme le RFC 4821. (Aujourd'hui, la principale application qui envoie des paquets UDP plus gros que la MTU, et doit donc se battre avec la fragmentation, est le DNS ; voir par exemple l'étude de Geoff Huston sur les comportements très variés des serveurs de la racine.)

La section 3.3 explique la question de la fiabilité : par défaut, UDP ne retransmet pas les paquets perdus. Si c'est nécessaire, c'est l'application qui doit le faire. Elle doit aussi gérer l'eventuelle duplication des paquets (qu'UDP n'empêche pas). Le RFC note que les retards des paquets peuvent être très importants (jusqu'à deux minutes, normalise le RFC, ce qui me semble très exagéré pour l'Internet) et que l'application doit donc gérer le cas où un paquet arrive alors qu'elle croyait la session finie depuis longtemps.

La section 3.4 précise l'utilisation des sommes de contrôle (facultatives pour UDP sur IPv4 mais qui devraient être utilisées systématiquement). Si une somme de contrôle pour tout le paquet semble excessive, et qu'on veut protéger uniquement les en-têtes de l'application, une bonne alternative est UDP-Lite (RFC 3828), décrit dans la section 3.4.2. (Il y a aussi des exceptions à la règle « somme de contrôle obligatoire en IPv6 » dans le cas de tunnels.)

Beaucoup de parcours sur l'Internet sont encombrés de « middleboxes », ces engins intermédiaires qui assurent diverses fonctions (NAT, coupe-feu, etc) et qui sont souvent de médiocre qualité logicielle, bricolages programmés par un inconnu et jamais testés. La section 3.5 spécifie les règles que devraient suivre les applications UDP pour passer au travers sans trop de heurts. Notamment, beaucoup de ces « middleboxes » doivent maintenir un état par flux qui les traverse. En TCP, il est relativement facile de détecter le début et la fin d'un flux en observant les paquets d'établissement (SYN) et de destruction (FIN) de la connexion. En UDP, ces paquets n'ont pas d'équivalent et la détection d'un flux repose en général sur des heuristiques. L'engin peut donc se tromper et mettre fin à un flux qui n'était en fait pas terminé. Si le DNS s'en tire en général (c'est un simple protocole requête-réponse, avec la lupart du temps moins d'une seconde entre l'une et l'autre), d'autres protocoles basés sur UDP pourraient avoir de mauvaises surprises. Ces protocoles doivent donc se préparer à de soudaines interruptions de la communication, si le timeout d'un engin intermédiaire a expiré alors qu'il y avait encore des paquets à envoyer. (La solution des keepalives est déconseillée par le RFC car elle consomme de la capacité du réseau et ne dispense pas de gérer les coupures, qui se produiront de toute façon.)

La section 5 fera le bonheur des programmeurs qui y trouveront des conseils pour mettre en œuvre les principes de ce RFC, via l'API des prises (sockets, RFC 3493). Elle est largement documentée mais en général plutôt pour TCP que pour UDP, d'où l'intérêt du résumé qu'offre ce RFC, qui ne dispense évidemment pas de lire le Stevens. Par exemple, en l'absence de mécanisme de TIME_WAIT (la prise reste à attendre d'éventuels paquets retardés, même après sa fermeture par l'application), une application UDP peut ouvrir une prise... et recevoir immédiatement des paquets qu'elle n'avait pas prévus, qui viennent d'une exécution précédente.

Le RFC détaille également la bonne stratégie à utiliser pour les ports. Il existe un registre des noms et numéros de ports (RFC 6335), et le RFC 7605 explique comment utiliser les ports. Notre RFC conseille notamment de vérifier les ports des paquets reçus, entre autre pour se protéger de certaines attaques, où l'attaquant, qui ne peut pas observer le trafic et doit injecter des paquets aveuglément, ne connait pas les ports utilisés (en tout cas pas les deux). L'application devrait utiliser un port imprévisible, comme le fait TCP (RFC 6056). Pour avoir suffisamment d'entropie pour les répartiteurs de charge, le RFC rappelle qu'en IPv6, on peut utiliser le champ flow label (RFC 6437 et RFC 6438).

Le protocole ICMP fournit une aide utile, que les applications UDP peuvent utiliser (section 5.2). Mais attention, certains messages ICMP peuvent refléter des erreurs temporaires (absence de route, par exemple) et ne devraient pas entraîner de mesures trop drastiques. Autre piège, il est trivial d'envoyer des faux paquets ICMP. Une application doit donc essayer de déterminer, en examinant le contenu du message ICMP, s'il est authentique. Cela nécessite de garder un état des communications en cours, ce que TCP fait automatiquement mais qui, pour UDP, doit être géré par l'application. Enfin, il faut se rappeler que pas mal de middleboxes filtrent stupidement l'ICMP et l'application doit donc être prête à se débrouiller sans ces messages.

Après tous ces conseils, la section 6 est dédiée aux questions de sécurité. Comme TCP ou SCTP, UDP ne fournit en soi aucun mécanisme d'intégrité des données ou de confidentialité. Pire, il ne fournit même pas d'authentification de l'adresse IP source (authentification fournie, avec TCP, par le fait que, pour établir la connexion, il faut recevoir les réponses de l'autre). Cela permet, par exemple, les injections de faux trafic (contre lesquelles il est recommandé d'utiliser des ports source imprévisibles, comme le fait le DNS), ou bien les attaques par amplification.

L'application doit-elle mettre en œvre la sécurité seule ? Le RFC conseille plutôt de s'appuyer sur des protocoles existants comme IPsec (RFC 4301, dont notre RFC note qu'il est très peu déployé) ou DTLS (RFC 6347). En effet, encore plus que les protocoles de gestion de la congestion, ceux en charge de la sécurité sont très complexes et il est facile de se tromper. Il vaut donc mieux s'appuyer sur un système existant plutôt que d'avoir l'hubris et de croire qu'on peut faire mieux que ces protocoles ciselés depuis des années.

Pour authentifier, il existe non seulement IPsec et DTLS mais également d'autres mécanismes dans des cas particuliers. Par exemple, si les deux machines doivent être sur le même lien (un cas assez courant), on peut utiliser GTSM (RFC 3682) pour s'en assurer.

Enfin, notre RFC se termine (section 7) par un tableau qui synthétise les recommandations, indiquant à chaque fois la section du RFC où cette recommandation est développée. Développeu·r·se d'applications utilisant UDP, si tu ne lis qu'une seule section du RFC, cela doit être celle-ci !

Quels changements depuis le RFC précédent, le RFC 5405 ? Le fond des recommandations reste le même, la principale addition est celle de nombreuses recommandations spécifiques au multicast (dont je n'ai pas parlé ici) mais aussi à l'anycast, aux disjoncteurs, et aux tunnels. Il y a également l'introduction d'une différence entre l'Internet public (où il se faut se comporter en bon citoyen) et des réseaux privés et fermés utilisant les mêmes protocoles, mais où on a droit à des pratiques qui seraient jugées anti-sociales sur l'Internet public (comme d'envoyer des paquets sans tenir compte de la congestion). Ce RFC est donc bien plus long que son prédécesseur.


Téléchargez le RFC 8085

Version PDF de cette page (mais vous pouvez aussi imprimer depuis votre navigateur, il y a une feuille de style prévue pour cela)

Source XML de cette page (cette page est distribuée sous les termes de la licence GFDL)