
RFC 9915 : Dynamic Host Configuration Protocol for IPv6
(DHCPv6)

Stéphane Bortzmeyer
<stephane+blog@bortzmeyer.org>

Première rédaction de cet article le 11 février 2026

Date de publication du RFC : Janvier 2026

https://www.bortzmeyer.org/9915.html

—————————-

IPv6 dispose de trois mécanismes principaux pour l’allocation d’une adresse IP à une machine. L’al-
location statique, ≪ à la main ≫, le système d’≪ autoconfiguration ≫ SLAAC du RFC 4862 1 et DHCP.
DHCP pour IPv6 était normalisé dans le RFC 8415, que notre RFC met à jour. Le protocole n’a guère
changé, le principal changement est la suppression de certaines fonctions peu utilisées.

DHCP permet à une machine (qui n’est pas forcément un ordinateur) d’obtenir une adresse IP (ainsi
que plusieurs autres informations de configuration) à partir d’un serveur DHCP du réseau local. C’est
donc une configuration ≪ avec état ≫, du moins dans son mode d’utilisation le plus connu. (Notre RFC
documente également un mode sans état.) DHCP nécessite un serveur, par opposition à l’autoconfigu-
ration du RFC 4862 qui ne dépend pas d’un serveur (cette autoconfiguration sans état peut être utilisée
à la place de, ou bien en plus de DHCP). Deux utilisations typiques de DHCP sont le SoHo où le routeur
est également serveur DHCP pour les trois PC connectés et le réseau local d’entreprise où deux ou trois
machines Unix distribuent adresses IP et informations de configuration à des centaines de machines.

Le principe de base de DHCP (IPv4 ou IPv6) est simple : la nouvelle machine annonce à la cantonade
qu’elle cherche une adresse IP, le serveur lui répond, l’adresse est allouée pour une certaine durée, le
bail, la machine cliente devra renouveler le bail de temps en temps.

L’administrateur d’un réseau IPv6 se pose souvent la question ≪ DHCP ou SLAAC ≫ ? Notez que les
deux peuvent coexister, ne serait-ce que parce que certaines possibilités n’existent que pour un seul des
deux protocoles. Ainsi, DHCP seul ne peut indiquer l’adresse du routeur par défaut. Pour le reste, c’est
une question de goût.

1. Pour voir le RFC de numéro NNN, https://www.ietf.org/rfc/rfcNNN.txt, par exemple https://www.ietf.
org/rfc/rfc4862.txt

1

2

Le DHCP spécifié par notre RFC ne fonctionne que pour IPv6, les RFC 2131 et RFC 2132 traitant
d’IPv4. Les deux protocoles restent donc complètement séparés, le RFC 4477 donnant quelques idées sur
leur coexistence. Il a parfois été question de produire une description unique de DHCPv4 et DHCPv6,
ajoutant ensuite les spécificités de chacun, mais le projet n’a pas eu de suite (section 1.2 de ce RFC), les
deux protocoles étant trop différents.

DHCP fonctionne par diffusion restreinte. Un client DHCP, c’est-à-dire une machine qui veut obtenir
une adresse, diffuse (DHCP fonctionne au-dessus d’UDP, RFC 768, le port source est 546, le port de
destination, où le serveur écoute, est 547) sa demande à l’adresse ”multicast” locale au lien ff02::1:2.
Le serveur se reconnait et lui répond. S’il n’y a pas de réponse, c’est, comme dans le DNS, c’est au client
de réémettre (section 15). L’adresse IP source du client est également une adresse locale au lien.

(Notez qu’une autre adresse de diffusion restreinte est réservée, ff05::1:3 ; elle inclut également
tous les serveurs DHCP mais, contrairement à la précédente, elle exclut les relais, qui transmettent les
requêtes DHCP d’un réseau local à un autre.)

Le serveur choisit sur quels critères il alloue les adresses IP. Il peut les distribuer de manière statique
(une même machine a toujours la même adresse IP) ou bien les prendre dans un ”pool” d’adresses et
chaque client aura donc une adresse ≪ dynamique ≫. Le fichier de configuration du serveur DHCP Kea
ci-dessous montre un mélange des deux approches.

Il faut bien noter (et notre RFC le fait dans sa section 22) que DHCP n’offre aucune sécurité. Comme
il est conçu pour servir des machines non configurées, sur lesquelles on ne souhaite pas intervenir,
authentifier la communication est difficile. Un serveur DHCP pirate, ou, tout simplement, un serveur
DHCP accidentellement activé, peuvent donc être très gênants.

Outre l’adresse IP, DHCP peut indiquer des options comme les adresses des serveurs DNS à utiliser
(RFC 3646).

Notre version IPv6 de DHCP est assez différente de la version IPv4 (et le RFC est plus de trois fois
plus long). Par exemple, l’échange ≪ normal ≫ entre client et serveur prend quatre paquets IP (section
5) et non pas deux. (Mais il y a aussi un échange simplifié à deux paquets, cf. section 5.1.) L’encodage
des messages est très différent, et il y a des différences internes comme l’IA (”Identity Association”) de la
section 12. Il y a aussi des différences visibles à l’utilisateur comme le concept de DUID (”DHCP Unique
IDentifier”), section 11, qui remplace les anciens ”client identifier” et ”server identifier” de DHCP v4. Les
différences sont telles que le RFC précise que leur intégration avec DHCP pour IPv4 n’est pas envisagée.

À l’heure actuelle, il existe plusieurs mises en œuvre de DHCPv6, comme Kea <https://www.
isc.org/kea/> (serveur seulement) et dhcpcd <https://roy.marples.name/projects/dhcpcd>
(client seulement). (Notez qu’une liste complète figurait dans le brouillon du RFC <https://www.
ietf.org/archive/id/draft-ietf-dhc-rfc8415bis-12.html#name-implementation-status>.)
Pour celles et ceux qui utilisent une Freebox comme serveur DHCP, il semble qu’elle ait DHCPv6 depuis
2018 <https://www.zdnet.fr/actualites/la-freebox-se-dote-de-nouvelles-fonctions-39863332.
htm> (je n’ai pas testé). Il parait que la Livebox le fait également. Je n’ai pas non plus essayé pour la Tur-
ris Omnia <https://www.bortzmeyer.org/turris.html> mais cela devrait marcher puisqu’elle
utilise le serveur odhcpd <https://git.openwrt.org/project/odhcpd.git>, qui sait faire du
DHCPv6 (ceci dit, je ne vois pas comment l’activer depuis les menus de Luci). Et il y a bien sûr des
implémentations non-libres dans des équipements comme les Cisco. Notez que ces mises en œuvre de
DHCPv6 n’ont pas forcément déjà intégré les modifications de notre RFC 9915.

—————————-
https://www.bortzmeyer.org/9915.html

3

Il existe aussi des programmes qui ne sont plus maintenus comme Dibbler <https://github.
com/tomaszmrugalski/dibbler> (client et serveur), l’ancien programme <https://www.isc.
org/downloads/dhcp/> de l’ISC (le nouveau est Kea), etc.

Voici un exemple d’utilisation de Dibbler, face à Kea, qui nous affiche les quatre messages (Solicit
- Advertise - Request - Reply) :

% sudo dibbler-client run
...
2026.02.11 08:28:04 Client Notice DUID creation: Generating 14-bytes long link-local+time (duid-llt) DUID.
2026.02.11 08:28:04 Client Notice DUID creation: generated using wlan0/4 interface.
2026.02.11 08:28:04 Client Info My DUID is 00:01:00:01:31:1e:fa:14:f6:fc:69:10:65:09.
...
2026.02.11 08:28:04 Client Info Creating SOLICIT message with 1 IA(s), no TA and 0 PD(s) on eth1/3 interface.
2026.02.11 08:28:04 Client Debug Sending SOLICIT(opts:1 3 39 8 6) on eth1/3 to multicast.
2026.02.11 08:28:04 Client Info Received ADVERTISE on eth1/3,trans-id=0x5ded1b, 5 opts: 1 2 3 23 39
2026.02.11 08:28:05 Client Info Processing msg (SOLICIT,transID=0x5ded1b,opts: 1 3 39 8 6)
2026.02.11 08:28:05 Client Info Creating REQUEST. Backup server list contains 1 server(s).
2026.02.11 08:28:05 Client Debug Advertise from Server ID=00:01:00:01:31:19:db:68:38:f7:cd:ce:22:c6, preference=0.[using this]
2026.02.11 08:28:05 Client Debug Sending REQUEST(opts:1 3 39 6 2 8) on eth1/3 to multicast.
2026.02.11 08:28:05 Client Info Received REPLY on eth1/3,trans-id=0x6eb008, 5 opts: 1 2 3 23 39
2026.02.11 08:28:05 Client Notice Address fc00:cafe:1234:4321:5678::2/128 added to eth1/3 interface.
2026.02.11 08:28:05 Client Debug RENEW(IA_NA) will be sent (T1) after 1000, REBIND (T2) after 2000 seconds.
2026.02.11 08:28:08 Client Notice FQDN: About to perform DNS Update: DNS server=2001:db8:2::dead:beef, IP=fc00:cafe:1234:4321:5678::2 and FQDN=grace
...

Le serveur en face était un Kea ainsi configuré :

"subnet6": [
{

"interface": "eth0", // Ce n’est pas bien documenté mais
// cette option est cruciale, autrement le client reçoit
// des ≪ Server could not select subnet for this client ≫.

"subnet": "fc00:cafe:1234:4321::/64",
"pools": [{ "pool": "fc00:cafe:1234:4321:5678::/80" }],

...

Si vous voulez, le pcap de l’échange est disponible (en ligne sur https://www.bortzmeyer.org/
files/dhcpv6-bis.pcap) (capture faite avec tcpdump -w /tmp/dhcpv6-bis.pcap udp and
\(port 546 or port 547\)). tcpdump voit le trafic ainsi :

09:28:04.624687 IP6 fe80::606d:ad11:58ca:6cab.546 > ff02::1:2.547: dhcp6 solicit
09:28:04.639479 IP6 fe80::6ee4:5672:da95:1018.547 > fe80::606d:ad11:58ca:6cab.546: dhcp6 advertise
09:28:05.652900 IP6 fe80::606d:ad11:58ca:6cab.546 > ff02::1:2.547: dhcp6 request
09:28:05.667843 IP6 fe80::6ee4:5672:da95:1018.547 > fe80::606d:ad11:58ca:6cab.546: dhcp6 reply

La requête est émise depuis une adresse lien-local (ici fe80::606d:ad11:58ca:6cab) pas de-
puis une adresse ≪ tout zéro ≫ comme en IPv4 (section 17 du RFC). On voit bien les quatre messages
(Solicit - Advertise - Request - Reply), décrit section 5.2 (et la liste des types possibles est
en section 7.3). Le serveur n’a pas répondu directement avec un Reply, parce que le client n’a pas inclus
l’option Rapid Commit (section 21.14). Dans l’échange à quatre messages, le client demande à tous
(Solicit), un(s) serveur(s) DHCP répond(ent) (Advertise), le client envoie alors sa requête au ser-
veur choisi (Request), le serveur donne (ou pas) son accord (Reply). Avec l’option -vvv, tcpdump est
plus bavard et montre qu’il analyse bien DHCPv6 :

—————————-
https://www.bortzmeyer.org/9915.html

4

09:28:04.624687 IP6 (flowlabel 0x51d28, hlim 1, next-header UDP (17) payload length: 99) fe80::606d:ad11:58ca:6cab.546 > ff02::1:2.547: [udp sum ok] dhcp6 solicit (xid=5ded1b (client-ID hwaddr/time type 1 time 824113684 f6fc69106509) (IA_NA IAID:1 T1:4294967295 T2:4294967295 (IA_ADDR :: pltime:4294967295 vltime:4294967295)) (Client-FQDN) (elapsed-time 0) (option-request DNS-server Client-FQDN))
09:28:04.639479 IP6 (flowlabel 0xf6846, hlim 64, next-header UDP (17) payload length: 140) fe80::6ee4:5672:da95:1018.547 > fe80::606d:ad11:58ca:6cab.546: [udp sum ok] dhcp6 advertise (xid=5ded1b (client-ID hwaddr/time type 1 time 824113684 f6fc69106509) (server-ID hwaddr/time type 1 time 823778152 38f7cdce22c6) (IA_NA IAID:1 T1:1000 T2:2000 (IA_ADDR fc00:cafe:1234:4321:5678::2 pltime:3000 vltime:4000)) (DNS-server 2001:db8:2::dead:beef 2001:db8:2::cafe:babe) (Client-FQDN))
09:28:05.652900 IP6 (flowlabel 0x51d28, hlim 1, next-header UDP (17) payload length: 117) fe80::606d:ad11:58ca:6cab.546 > ff02::1:2.547: [udp sum ok] dhcp6 request (xid=6eb008 (client-ID hwaddr/time type 1 time 824113684 f6fc69106509) (IA_NA IAID:1 T1:4294967295 T2:4294967295 (IA_ADDR fc00:cafe:1234:4321:5678::2 pltime:3000 vltime:4000)) (Client-FQDN) (option-request DNS-server Client-FQDN) (server-ID hwaddr/time type 1 time 823778152 38f7cdce22c6) (elapsed-time 0))
09:28:05.667843 IP6 (flowlabel 0xf6846, hlim 64, next-header UDP (17) payload length: 140) fe80::6ee4:5672:da95:1018.547 > fe80::606d:ad11:58ca:6cab.546: [udp sum ok] dhcp6 reply (xid=6eb008 (client-ID hwaddr/time type 1 time 824113684 f6fc69106509) (server-ID hwaddr/time type 1 time 823778152 38f7cdce22c6) (IA_NA IAID:1 T1:1000 T2:2000 (IA_ADDR fc00:cafe:1234:4321:5678::2 pltime:3000 vltime:4000)) (DNS-server 2001:db8:2::dead:beef 2001:db8:2::cafe:babe) (Client-FQDN))

Mais si vous préférez tshark, l’analyse de cet échange est également disponible (en ligne sur https:
//www.bortzmeyer.org/files/dhcpv6-bis.txt).

Notez que certains clients DHCP dépendent de la présence d’un routeur qui envoie des RA (RFC
4861) avec le bit M - ”Managed” - à 1 (RFC 4861, section 4.2). En l’absence de ces annonces, le client se
contente de demander des informations diverses au serveur DHCP, mais pas d’adresse IP.

Et si vous voulez compiler dhcpcd vous-même, c’est simple :

wget https://github.com/NetworkConfiguration/dhcpcd/releases/download/v10.3.0/dhcpcd-10.3.0.tar.xz
dhcpcd-10.3.0.tar.xz
tar xvf dhcpcd-10.3.0.tar
dhcpcd-10.3.0
./configure
make
sudo make install

L’échange à deux messages (Solicit - Reply) est, lui, spécifié dans la section 5.1. Il s’utilise si le
client n’a pas besoin d’une adresse IP, juste d’autres informations de configuration comme l’adresse du
serveur NTP, comme décrit dans le RFC 4075. Même si le client demande une adresse IP, il est possible
d’utiliser l’échange à deux messages, via la procédure rapide avec l’option Rapid Commit.

Tout client ou serveur DHCP v6 a un DUID (”DHCP Unique Identifier”, décrit en section 11). Le DUID
est opaque et ne devrait pas être analysé par la machine qui le reçoit. La seule opération admise est de
tester si deux DUID sont égaux (indiquant qu’en face, c’est la même machine). Il existe plusieurs façons
de générer un DUID (dans l’exemple plus haut, Dibbler avait choisi la méthode duid-llt, adresse lo-
cale et heure) et de nouvelles pourront apparaitre dans le futur. Par exempe, un DUID peut être fabriqué
à partir d’un UUID (RFC 6355).

Mais l’utilisation exclusive du DUID, au détriment de l’adresse MAC, n’est pas une obligation du
RFC (le RFC, section 11, dit juste ≪ ”DHCP servers use DUIDs to identify clients for the selection of confi-
guration parameters” ≫, ce qui n’interdit pas d’autres méthodes). On peut utiliser l’adresse Ethernet. En
combinaison avec des commutateurs qui filtrent sur l’adresse MAC, cela peut améliorer la sécurité.

Puisqu’on peut aussi attribuer des adresses statiquement à une machine, en la reconnaissant, par
exemple, à son adresse MAC ou à son DUID, voici comment on peut configurer Kea pour donner une
adresse IP fixe au client d’un certain DUID :

"reservations": [
{

"duid": "00:01:00:01:31:1e:fa:14:f6:fc:69:10:65:09",
"ip-addresses": ["fc00:cafe:1234:4321:b0f:1111::1"]

}

—————————-
https://www.bortzmeyer.org/9915.html

5

La section 6 de notre RFC décrit les différentes façons d’utiliser DHCPv6. On peut se servir de
DHCPv6 en mode sans état (section 6.1), lorsqu’on veut juste des informations de configuration, ou avec
état (section 6.2, qui décrit la façon historique d’utiliser DHCP), lorsqu’on veut réserver une ressource
(typiquement l’adresse IP) et qu’il faut alors que le serveur enregistre (et pas juste dans sa mémoire, car
il peut redémarrer) ce qui a été réservé. On peut aussi faire quelque chose qui n’a pas d’équivalent en
IPv4, se faire déléguer un préfixe d’adresses IP entier (section 6.3). Un client DHCP qui reçoit un préfixe,
mettons, /60, peut ensuite redéléguer des bouts, par exemple ici des /64. (Le RFC 7084 est une utile
lecture au sujet des routeurs installés chez M. Toutlemonde.)

Le format détaillé des messages est dans la section 8. Le début des messages est toujours le même,
un type d’un octet (la liste des types est en section 7.3) suivi d’un identificateur de transaction de trois
octets. Le reste est variable, dépendant du type de message.

On a déjà parlé du concept de DUID plus haut, donc sautons la section 11 du RFC, qui parle du
DUID, et allons directement à la section 12, qui parle d’IA (”Identity Association”). Une IA est composée
d’un identifiant numérique, l’IAID (”IA IDentifier”) et d’un ensemble d’adresses et de préfixes. Le but
du concept d’IA est de permettre de gérer collectivement un groupe de ressources (adresses et préfixes).
Pour beaucoup de clients, le concept n’est pas nécessaire, on n’a qu’une IA, d’identificateur égal à zéro.
Pour les clients plus compliqués, on a plusieurs IA, et les messages DHCP (par exemple d’abandon d’un
bail) indiquent l’IA concernée.

Comme pour DHCPv4, une bonne partie des informations est transportée dans des options, décrites
dans la section 21. Certaines options sont dans ce RFC, d’autres pourront apparaitre dans des RFC
ultérieurs. Toutes les options commencent par deux champs communs, le code identifiant l’option (deux
octets), et la longueur de l’option. Ces champs sont suivis par des données, spécifiques à l’option. Ainsi,
l’option ”Client Identifier” a le code 1, et les données sont un DUID (cf. section 11). Autre exemple, l’op-
tion ”Vendor Class” (code 16) permet d’indiquer le fournisseur du logiciel client (notez qu’elle pose des
problèmes de sécurité, cf. RFC 7824, et section 23 de notre RFC). Notez qu’il peut y avoir des options
dans les options, ainsi, l’adresse IP (code 5) est toujours dans les données d’une option IA (les IA sont
décrites en section 12).

Puisqu’on a parlé de sécurité, la section 22 du RFC détaille les questions de sécurité liées à DHCP.
Le fond du problème est qu’il y a une profonde incompatibilité entre le désir d’une autoconfiguration
simple des clients (le but principal de DHCP) et la sécurité. DHCP n’a pas de chiffrement et tout le
monde peut donc écouter les échanges de messages, voire les modifier. Et, de toute façon, le serveur n’est
pas authentifié, donc le client ne sait jamais s’il parle au serveur légitime. Il est trivial pour un méchant
de configurer un serveur DHCP ≪ pirate ≫ et de répondre à la place du vrai, indiquant par exemple
un serveur DNS que le pirate contrôle. Les RFC 7610 et RFC 7513 décrivent des solutions possibles à ce
problème.

Des attaques par déni de service sont également possibles, par exemple via un client méchant qui
demande des ressources (comme des adresses IP) en quantité. Un serveur prudent peut donc limiter la
quantité de ressources accessible à un client.

Maintenant, les questions de vie privée. La section 23 rappelle que DHCP est très indiscret. Le RFC
7824 décrit les risques que DHCP fait courir à la vie privée du client (et le RFC 7844 des solutions
possibles).

Les registres IANA ne changent pas par rapport à l’ancien RFC. Les différents paramètres sont en
ligne <https://www.iana.org/assignments/dhcpv6-parameters/dhcpv6-parameters.xml>.

L’annexe A de notre RFC décrit les changements depuis l’ancien RFC 8415. Rien d’essentiel n’a été
changé. On notera :

—————————-
https://www.bortzmeyer.org/9915.html

6

— Suppression de certains mécanismes optionnels (comme ils étaient de toute façon optionnels, cela
n’affecte pas l’interopérabilité) qui étaient complexes et peu mis en œuvre : les adresses tempo-
raires (IA TA), il faut désormais relâcher explicitement celles qu’on veut temporaires, la possibi-
lité de faire de l’”unicast”, et donc, logiquement, l’option qui forçait le ”multicast”.

— Correction de plusieurs erreurs signalées <https://www.rfc-editor.org/errata_search.
php?rfc=8415&rec_status=15&presentation=table> (certaines n’ont pas été corrigées
puisqu’elles s’appliquaient à des options supprimées).

— Texte plus précis sur les ports UDP utilisés.
— Progression du RFC au statut de norme Internet complète (alors que le RFC 8415 était officielle-

ment une proposition de norme).

—————————-
https://www.bortzmeyer.org/9915.html

