
Using the CowBoy HTTP server from an Elixir program

Stéphane Bortzmeyer
<stephane+blog@bortzmeyer.org>

First publication of this article on 17 September 2019

https://www.bortzmeyer.org/cowboy-elixir.html

—————————-

Among the people who use the CowBoy <https://ninenines.eu/> HTTP server, some do it
from an Erlang program, and some from an Elixir program. The official documentation <https://
ninenines.eu/docs/en/cowboy/2.6/guide/> only cares about Erlang. You can find some hints
online about how to use CowBoy from Elixir but they are often outdated (CowBoy changed a lot), or
assume that you use CowBoy with a library like Plug <https://hexdocs.pm/plug/readme.html>
or a framework like Phoenix <https://hexdocs.pm/phoenix/>. Therefore, I document here how I
use plain CowBoy, from Elixir programs, because it may help. This is with Elixir 1.9.1 and CowBoy 2.6.3.

I do not find a way to run CowBoy without the mix tool <https://hexdocs.pm/mix/>. So, I start
with mix :

% mix new myserver
...
Your Mix project was created successfully.

I then add CowBoy dependencies to the mix.exs file :

defp deps do
[

{:cowboy, "˜> 2.6.0"}
]

end

(Remember that CowBoy changes a lot, and a lot of CowBoy examples you find online are for old
versions. Version number is important. I used 2.6.3 for the examples here.) Then, get the dependencies :

1

2

% mix deps.get
...

cowboy 2.6.3
cowlib 2.7.3
ranch 1.7.1

...

We can now fill lib/myserver.ex with the main code :

defmodule Myserver do

def start() do
dispatch_config = build_dispatch_config()
{ :ok, _ } = :cowboy.start_clear(:http,

[{:port, 8080}],
%{ env: %{dispatch: dispatch_config}}

)
end

def build_dispatch_config do
:cowboy_router.compile([

{ :_,
[

{"/", :cowboy_static, {:file, "/tmp/index.html"}}
]}

])
end

end

And that’s all. Let’s test it :

% iex -S mix
Erlang/OTP 22 [erts-10.4.4] [source] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1]

Compiling 1 file (.ex)
Interactive Elixir (1.9.1) - press Ctrl+C to exit (type h() ENTER for help)

iex(1)> Myserver.start()
{:ok, #PID<0.197.0>}

iex(2)>

If you have HTML code in /tmp/index.html, you can now use any HTTP client such as curl, lynx or
another browser, to visit http://localhost:8080/.

The start_clear routine (which was start_http in former versions) starts HTTP (see its docu-
mentation <https://ninenines.eu/docs/en/cowboy/2.6/manual/cowboy.start_clear/>.)
If you want explanation about the behaviour :cowboy_static and its parameters like :file, see
the CowBoy documentation <http://ninenines.eu/docs/en/cowboy/2.6/manual/cowboy_
static/>. If you are interested in routes (the argument of :cowboy_router.compile, directives
for CowBoy telling it ”if the request is for /this, then do that”), see also the documentation <https:
//ninenines.eu/docs/en/cowboy/2.6/manual/cowboy_router/>. There are many other pos-
sibilities, for instance, we could serve an entire directory :

—————————-
https://www.bortzmeyer.org/cowboy-elixir.html

3

def build_dispatch_config do
:cowboy_router.compile([

{ :_,
[

Serve a single static file on the route "/".
{"/", :cowboy_static, {:file, "/tmp/index.html"}},

Serve all static files in a directory.
PathMatch is "/static/[...]" -- string at [...] will be used to look up the file
Directory static_files is relative to the directory where you run the server
{"/static/[...]", :cowboy_static, {:dir, "static_files"}}

]}
])

end

You can now start from this and improve :
— Use start_tls instead of start_clear, to provide security through HTTPS,
— Replace def start() do by def start(_type, _args) do (or def start(type, args)

do if you want to use the parameters) to follow OTP conventions, in order for instance to run the
HTTP server under a supervisor (see this example <https://gist.github.com/mpugach/
9093f092f63e5b91f08a8ac116684d66> - untested), or simply to create a standalone appli-
cation,

— Serve dynamic content by using Elixir (or Erlang) modules to produce content on the fly.

—————————-
https://www.bortzmeyer.org/cowboy-elixir.html

