
Monitoring DNSSEC zones: what, how and when?
Stéphane Bortzmeyer

AFNIC
Immeuble International

78181 Saint-Quentin-en-Yvelines
France

bortzmeyer@nic.fr

Abstract—Unlike the traditional DNS, where zones, once prop-
erly configured, stay OK forever, DNSSEC introduces much more
possibilities of failure. A zone can be perfect at one time and,
without human intervention, stop working later. Permanent and
automatic monitoring is therefore a necessary part of DNSSEC
operations. But why do we still see DNSSEC problems such
as signature expirations or missing keys and why are they
often detected by a post on public mailing lists rather than by
monitoring? As of today, only a minority of top-level domains
operators can say they never had a DNSSEC validation failure.

Because monitoring is not perfect today, we need to think about
how to monitor and what to monitor. Among various issues,
there is a pressing need for a time-aware monitoring, which
keeps track of the situation of the past, to be able to deduce the
possible current state of DNS caches. We developed a new tool
to monitor the timing of key rollover events and ran it against
several domains, showing that timing errors are not an exception.

I. INTRODUCTION

The Domain Name System (DNS) allows clients, the re-
solvers, to query servers about resource records of various
types1 Records for a same name and of a same type make a
resource record set and some operations (such as signature, see
later) handle a set as atomic. DNS relies heavily on caching,
for performance, and the time during which you may cache is
indicated by the server, as a Time To Live (TTL).

Because DNS has several vulnerabilities, allowing to insert
fake data ([AA04] and [HvM09]), the DNS SEcurity Exten-
sions (DNSSEC) have been developed to allow cryptographic
signing of resources record sets ([AAL+05a], [AAL+05c]
and [AAL+05b]). This makes modification of data easily
detectable.

DNSSEC use assymetric cryptography and the public keys
are published in the DNS itself. Signatures are also published
as resource records, with a normal TTL. They also have
an expiration date, to prevent replay. Good cryptographic
practices suggest to replace the keys from time to time2 Such
key rollovers are quite delicate since old keys and signatures
staying in the caches at the resolvers may easily prevent
proper validation of data. Hence the importance of timing in

1The two types most often queried are A - IPv4 addresses - and MX - mail
servers for a domain.

2Although it is not clear that the risks and problems associated with this
practice are worth it. But everyone does it.

key rollovers ([KG06]) and the existence of several tools3 to
automate this process.

As a result, breakage of domains by DNSSEC validation
errors happened in many signed TLD and other domains. See
for instance the use of wrong keys in .UK in september 20104,
the expiration of signatures in .GI in january 20115 or the use
of an invalid signature for a NSEC3 record in .FR in february
20116.

II. MONITORING

Network and systems monitoring is typically done today
for basic services (host up/down, DNS servers replies/does
not reply) but not always for more complicated things such
as signature expiration. Until recently, “simple” failures like
a signature expiration were still able to sneak under the radar
and be undetected until an embarassing message appears on
public mailing lists, such as OARC7’s dns-operations, asking
“Does anyone know what is going on with .EXAMPLE?”.
Of course, we can hope that these “simple” failures will
be less and less common with time, when tools get better
and system administrators more aware of the issue. But we
cannot be confident that this category of bugs has completely
disappeared.

So, what are today the best practices in DNSSEC
monitoring? Most DNS operators use a tool which perform
automatically various tests at regular intervals, and raise an
alarm if a test has failed repeatedly. The best known of these
tools is Nagios8 but there are many others. All these tools come
with predefined tests but DNSSEC testing is not yet part of
this set. In that case, the system administrator installs plugins,
which perform the tests, and the tool just acts as a scheduler,
running the test at specified times, and triggering alarms if
needed. The Nagios API for these plugins is widely used
and is recognized by many programs. Since no monitoring
tool comes with “out of the box” DNSSEC tests, many
plugins were developed and are available on the network such

3Such as OpenDNSSEC http://www.opendnssec.org/.
4http://blog.nominet.org.uk/tech/2010/09/24/dnssec-incident-report/
5http://dnssec-deployment.org/pipermail/dnssec-deployment/2011-January/

004719.html
6https://www.dns-oarc.net/files/workshop-201103/DNSSEC Key

Deletion Issue-Vincent Levigneron-afnic.pdf
7DNS Operations, Analysis and Research Center https://www.dns-oarc.net/
8http://www.nagios.org/

as http://dns.measurement-factory.com/tools/nagios-plugins/
check zone rrsig expiration.html, http://dave.knig.ht/check
full zone rrsig expiration/, https://dnssec.surfnet.nl/?p=562,
http://svn.durchmesser.ch/trac/check dnssec/, etc.

What are the specific DNSSEC tests to perform? The most
obvious is that the authoritative name servers all serve the
DNSKEY and transmit signed data. As far as we know, no
TLD ever went the DNSSEC way with a missing name server
but anecdotal evidence indicates that it happened with lower
zones.

After that, of course, the first test which comes to mind is
signature expiration which is still, at the date of the paper, the
most common failure. But testing that the authoritative name
servers does not serve expired signatures, while a first step,
is not sufficient: when the signature is expired, it is already
too late! Even if some resolvers (for instance Unbound) accept
signatures for some time after the expiration, you cannot rely
on it, specially since caching means that the expired signatures
may stay for some time in the resolvers. You therefore need
to be proactive, something that most of the above tools do,
by testing that a signature is “about” to expire (“about” being
configurable).

In the spirit of “you can debug DNSSEC with only dig and
date”, the Unix shell script at http://www.bortzmeyer.org/files/
check-sig.sh illustrates this method: it adds a given amount of
days to the current time, retrieves the signatures, and test if
their expiration time is below the above time. If not, it warns
that the signature is too close from expiration. Such a very
simple tool can easily be integrated into a monitoring solution.

Other common tests are general consistency (that the key
used for signing is in the keyset, that the signatures are valid,
etc), and, for some tools, that the chain of trust from a given
trust anchor (such as the key of the DNS root) can be followed.

These tools are developed for the specific purpose of
monitoring a DNSSEC server. But the simplest of all tests
is to set up a validating resolver and to test your zones
through it. Validating resolvers, by default, returns an error
code (SERVFAIL, for Server Failure) is validation fails. You
then just have to test for this code. To be sure that the trust
anchor has not been deleted from the configuration, you can
even test that the reply comes with the AD (Authentic Data)
bit set, indicating a positive validation9. The strength of this
method is its simplicity: no programming, except a very small
wrapper which sends the request and test the result.

While it is a very useful method (and we use it to mon-
itor continously the .FR name servers, using the Unbound
resolver), its main weakness is that the result depend on the
state of the resolver’s cache. For instance, if the key used for
the signatures is no longer in the authoritative name servers but
is still in the cache, thanks to its TTL, this test will wrongly
report a success. Addressing this weakness is covered in the
next section.

Some tools integrate many different tests and therefore try

9With the NSEC3 and opt-out option, it does not work for negative answers,
such as “this domain does not exist”, for which the AD bit is not set.

to offer a comprehensive testing of the DNSSEC setup. They
often provide a Web interface and sometimes a command-
line interface, suitable for automatic periodic testing. The best
known tools today are:

• IIS’ DNScheck http://dnscheck.iis.se/
• Verisign’s DNSSEC debugger http://dnssec-debugger.

verisignlabs.com/
• Sandia Laboratories’ DNSviz http://dnsviz.net/
• AFNIC’s Zonecheck http://www.zonecheck.fr/
Some can be used for monitoring (such as Zonecheck at

AFNIC which is run periodically against .FR).

III. TIME-AWARE MONITORING

There is apparently today no tool that can check that a
DNSSEC zone is always consistent. By “consistent”, we mean:

1) every RRSIG still in the caches of the resolvers is made
by a key which is currently in the zone,

2) and that the key used for the current signatures is in all
the key sets still cached.

As a result, it is quite possible that some DNSSEC zones
have sometimes “windows of vulnerability” where, for in-
stance, a cached RRSIG has no key in the authoritative servers,
but these windows are not detected because there are very few
validating caches: if they are all lucky, nobody will notice the
problem. .FR had the problem once10. It was detected because
it lasted too long but a similar problem of a short duration
could have been unnoticed. To see if these problems occur,
we need a new tool.

Such a tool cannot be a one-shot testing tool like are most of
the DNSSEC Nagios plugins discussed in the previous section.
It needs to have a memory, to remember the signatures that
were present before, as long as their TTL is not over.

We developed such a tool. Its algorithm is:
1) Runs the tool periodically (a good interval is a small

fraction of the TTL of RRSIG and DNSKEY RRsets).
2) When the tool runs for the first time, it stores in a

database various RRSIGs, the keys they use and the
TTL. Same thing with the DNSKEY record.

3) Each time the tool runs, it:
• checks that, for every RRSIG still possibly in the

caches, the authoritative name servers currently
have the key (or the complete key chain, if we want
to test from the DS in the parent),

• checks that, for every DNSKEY still possibly in the
caches, the current signatures use only keys in this
set.

• updates the database
What resource record type to use to get the signatures?

For a general-use tool, SOA, NS and DNSKEY are the only
one we are sure they exist. But signatures on DNSKEY are
special (they are often done with two keys or, of only one,
by the KSK, not the ZSK). Currently, we record signatures on

10http://operations.afnic.fr/en/2010/11/22/dnssec-validating-resolution-problem.
html

both the SOA and the DNSKEY but, for the analysis, we use
only the signatures on the SOA. It may not be sufficient (for
instance, if every resource record set is signed independently,
some signatures may be right for one type but not for the other)
but there is little choice. If you accept to modify the code for
specific domains, you can use a record which is present in
these domains11

It would be interesting too to have the signatures of the
“non-existing domain or data” records, NSEC or NSEC3.
Again, there is no perfectly sure way to get them for any
domain: you cannot query them directly so you have to query
a domain that you believe does not exist (for instance by using
a long random name12) or a type which is so uncommon that
it probably does not exist. It is not perfect but it would extend
the monitoring to these NSEC* records.

The security of a delegation, with DNSSEC, is done with
a DS13 resource record in the parent zone. This DS is signed
by the parent. The same issues may occur when replacing it
with a new one and it would be interesting to monitor it as
well.

One may wonder if we should use the TTL or the signature
expiration date in the calculations. [AAL+05a], sections 6
and 8.1 say the resolver must use the first value (either the
expiration of the TTL or the expiration of the signature). In
practice, signature durations are almost always much larger
than TTL so the current version of the tool takes only TTL
into account.

The current tool was developed in Python14, using the
excellent dnspython package15 to retrieve and parse DNS
resource records. The signatures and keys are stored in a
SQLite16 database. In the database schema, there is one table
for the signatures and two for the keys, one for the keys
themselves and one for the key sets. That is because some
information is attached to the key, such as the cryptographic
algorithm which was used, and some is attached to the key set,
such as the TTL. The caching works per set, not per record,
hence the need to store the set itself.

Two instances of the program are running, one for mon-
itoring of the keys (addition and deletion), one as a Nagios
plugin, to be used from a monitoring system (most of existing
monitoring tools can use plugins written for Nagios). Various
utility programs allow to display things such as the history of
keysets for a given zone:

% ./keyset-zone.py cz
#1 of cz.: [’34702’, ’14568*’]

(first 2011-01-31 21:23:50Z,
last 2011-03-08 07:16:47Z)

#2 of cz.: [’34702’, ’14568*’, ’400’]
(first 2011-03-08 08:14:50Z,
last 2011-03-15 16:14:57Z)

11For instance there is often a TXT record at the apex, with various human-
readable information, to help debugging.

12It will not work if the zone contain wildcards.
13“Delegation Signer”, a cryptographic hash of the public key of the child

zone
14http://www.python.org/
15http://www.dnspython.org/
16http://www.sqlite.org/

#3 of cz.: [’14568*’, ’400’]
(first 2011-03-15 17:16:28Z,
last 2011-03-22 14:16:44Z)

You can see above a key rollover in two steps. On March
8th, the ZSK 400 is introduced, on March 15th, the ZSK 34702
is deleted.

Since it relies on a SQL database, you can also explore the
tables with regular SQL commands, here for the signatures:

sqlite> SELECT first_seen,last_seen,ttl FROM Signatures
WHERE type=6 AND name=’192.in-addr.arpa.’

AND key_tag=20918 ORDER BY last_seen DESC;
2011-03-28 17:29:30|2011-03-28 20:17:31|86400
2011-03-28 13:22:23|2011-03-28 16:25:05|86400
2011-03-28 09:19:59|2011-03-28 12:28:09|86400

And here for the keysets, then for the keys:

sqlite> SELECT first_seen,last_seen,ttl,id FROM Keysets
WHERE name=’192.in-addr.arpa.’
ORDER BY last_seen DESC;

2011-03-29 09:38:45|2011-03-31 08:30:30|14400|J/dCsFib6kxRer/O/eh1ZbI/Un8=
2011-03-21 21:39:09|2011-03-29 08:38:16|14400|NgM4JKT7QacTgX+ZF7bNo2owKjQ=

sqlite> SELECT first_seen,last_seen,key_tag FROM Keys
WHERE name=’192.in-addr.arpa.’
ORDER BY last_seen DESC;

2011-03-01 15:34:17|2011-03-31 08:30:30|39318
2011-03-21 21:39:09|2011-03-31 08:30:30|60494
2011-03-01 15:34:17|2011-03-29 08:38:16|20918

The tool is published under a free software licence17 at
https://github.com/bortzmeyer/key-checker.

IV. RESULTS

The program started to run at the end of January 2011. 54
domains are monitored, both top-level domains and “impor-
tant” domains at the second or third level. As suspected, sev-
eral of them experienced rollover problems, which apparently
have not been detected by other means. It seems to indicate
that the tools currently use to manage the keys are far from
perfect.

Here are examples of the two possible problems, new keys
used too soon and old keys deleted too soon, with the guinea
pig domain office--enregistrement.fr. Here are the keysets
before and after a careless key rollover:

% ./keyset-zone.py office--enregistrement.fr
...
#3 of office--enregistrement.fr.:

[’15856*’, ’1611’, ’56550’, ’36216’]
(first 2011-02-08 11:33:00Z,
last 2011-02-27 14:28:42Z)

#4 of office--enregistrement.fr.:
[’15856*’, ’37155’]
(first 2011-02-27 15:22:41Z,
last 2011-03-22 13:21:35Z)

The KSK 15856 stayed but the entire set of three ZSK was
replaced by a new ZSK, without concern for the proper key
rollover timing. And here is the analysis:

% ./examine-history.py office--enregistrement.fr
ERROR: signature of zone office--enregistrement.fr.

last seen at 2011-02-27 14:28:42
(with a TTL of 3600)

17BSD three-clause, allowing pretty much every use.

while the key 1611 was retired
at 2011-02-27 15:22:41

...

Here, the signatures were made by the key 1611 and the key
was deliberately withdrawn fom the DNSKEY set18 without
waiting for the signatures and the caches to expire.

Second example:

% ./examine-history.py office--enregistrement.fr
...
ERROR: signature of zone office--enregistrement.fr.

first seen at 2011-02-27 15:22:41
while the last keyset before key 37155
was last seen at 2011-02-27 14:28:42
and its TTL was 3600

Here, in the same rollover, the new key was immediately
used for signatures, while the former key set was still possibly
in some caches.

Do this sort of problem actually occur in the wild? Unfor-
tunately, yes. See for instance this rollover:

% ./examine-history.py noaa.gov
ERROR: signature of zone noaa.gov.

last seen at 2011-02-18 11:17:47
(with a TTL of 86400)
while the key 23826 was retired
at 2011-02-18 21:26:20

Because of the TTL, the key should have been published
until February 19th at noon. Because of the early retirment
of key 23826, unvalidatable signatures have been available in
caches for up to 14 hours.

In the same rollover, another problem occured:

ERROR: signature of zone noaa.gov.
first seen at 2011-02-18 21:26:20
while the last keyset before key 52668
was last seen at 2011-02-18 20:27:06
and its TTL was 86400

The new key 52668 was immediately used while it should
have been published but not used for 24 hours19

From the sample of tested domains, it seems that the first
error (key retired while signatures were still in some caches)
is the most common. Here is another example:

% ./examine-history.py isoc.org
ERROR: signature of zone isoc.org.

last seen at 2011-03-01 21:31:08
(with a TTL of 86400)
while the key 41414 was retired
at 2011-03-02 10:30:13

The tool was again too eager to delete the key (12 hours
while the TTL was 24 hours).

The problem can also happen to TLD. Here, with the ccTLD
of Bulgaria:

% ./examine-history.py bg
ERROR: signature of zone bg.

last seen at 2011-03-19 18:14:39
(with a TTL of 345600)

18The monitor program runs once every hour so the times are approximate.
19Contacted, the NOAA DNS administrator diagnosed a bug in the recent

version 1.6 of the program they use, rollerd https://www.dnssec-tools.org/wiki/
index.php/Rollerd. Previous version had no such issues.

TABLE I
SUMMARY OF ALL THE SIGNIFICATIVE INCIDENTS DETECTED WITH THE

FIRST TESTS OF THIS TOOL

Zone Date Glitch Window of vulnerability
weather.gov 2011-04-07 used too early 18h

isoc.org 2011-03-29 retired too early 11h

192.in-addr.arpa 2011-03-28 retired too early 14h

my 2011-03-26 retired too early 24h

bg 2011-03-19 retired too early 72h

isoc.org 2011-03-01 retired too early 11h

noaa.gov 2011-02-18 used too early 24h

noaa.gov 2011-02-18 retired too early 24h

while the key 2817 was retired
at 2011-03-20 20:12:40

The TTL was huge (345600 seconds) and therefore the
signature could have been in the caches until March 23rd.
But the key 2817 was retired before.

Some cases are more complicated and more difficult to
analyze. For instance, this reported problem is questionable:

% ./examine-history.py isc.org
ERROR: signature of zone isc.org.

first seen at 2011-02-27 01:08:42
while the last keyset before key 21693 was
last seen at 2011-02-27 00:06:07
and its TTL was 7200

That’s because isc.org20 uses a rare technique, double signa-
ture where every resource record is signed with two keys. The
key 21693 was published on February 27th and immediately
used for actual signatures. Since the TTL of the DNSKEY
set is two hours, it seems to mean that the signatures may
have been unvalidatable for up to two hours, if the DNSKEY
RRset was already in the cache. But another key was in the
old keyset, 26982, and this key was also used for signing. It
means that every record had a correct signature, with 26982,
and a possibly invalid one, with 21693.

What should be the behaviour of a validating DNS resolver
in such a case? [AAL+05b], section 5.3.3 (“Checking the
Signature”) says a validating resolver is free to choose its
policy when there are multiple signatures so, in theory, an
unlucky resolver could pick the wrong one. But this rule seems
to be applicable only when the two signatures have a proper
chain of trust from a trust anchor. If a resolver misses key
21693, it must tries the signatures made by the other key so
the warning of our tool was probably spurious in that case.

V. CONCLUSION AND FUTURE WORK

This short run of the new key rollover analysis tool showed
that the problem is still, at the beginning of 2011, a reality.
There is not yet an indication that DNSSEC problems are
entirely behind us. While we can hope that, in five or ten
years, these problems will be no only solved but also forgotten,
except by a few old timers, DNSSEC today’s situation forces

20Warning: the previous example was isoc.org, this one is isc.org, just one
letter is different.

us to do a lot of monitoring to catch the issues before someone
else spot them.

With time, new and better key management tools will be
developed, and tested, but it is a long-term project.

To improve the monitoring, we hope to develop of a
vizualisation system of the database, interactive, able to show
the various periods, allowing to zoom to see discrepancies,
etc. It would make analysis easier and more spectacular.

ACKNOWLEDGMENT

Thanks to the DNS administrators who, warned of the issue,
took the time to discuss it with me. For tool development,
thanks to Joe Abley. For discussions and brainstorming about
the new tool, thanks to Kim-Minh Kaplan, Patrik Wallström
and Duane Wessels.

Presented at the SATIN conference21 on April 4th, 2011.

REFERENCES

[AA04] D. Atkins and R. Austein. Threat Analysis of the Domain Name
System (DNS). RFC 3833, RFC Editor, August 2004.

[AAL+05a] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
DNS Security Introduction and Requirements. RFC 4033, RFC
Editor, March 2005.

[AAL+05b] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
Protocol Modifications for the DNS Security Extensions. RFC
4035, RFC Editor, March 2005.

[AAL+05c] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
Resource Records for the DNS Security Extensions. RFC 4034,
RFC Editor, March 2005.

[HvM09] A. Hubert and R. van Mook. Measures for Making DNS More
Resilient against Forged Answers. RFC 5452, RFC Editor,
January 2009.

[KG06] O. Kolkman and R. Gieben. DNSSEC Operational Practices.
RFC 4641, RFC Editor, September 2006.

21http://conferences.npl.co.uk/satin/

