Je suis Charlie

Autres trucs

Accueil

Seulement les RFC

Seulement les fiches de lecture

Mon livre « Cyberstructure »

Ève

Les RFC (Request For Comments) sont les documents de référence de l'Internet. Produits par l'IETF pour la plupart, ils spécifient des normes, documentent des expériences, exposent des projets...

Leur gratuité et leur libre distribution ont joué un grand rôle dans le succès de l'Internet, notamment par rapport aux protocoles OSI de l'ISO organisation très fermée et dont les normes coûtent cher.

Je ne tente pas ici de traduire les RFC en français (un projet pour cela existe mais je n'y participe pas, considérant que c'est une mauvaise idée), mais simplement, grâce à une courte introduction en français, de donner envie de lire ces excellents documents. (Au passage, si vous les voulez présentés en italien...)

Le public visé n'est pas le gourou mais l'honnête ingénieur ou l'étudiant.


RFC 9250: DNS over Dedicated QUIC Connections

Date de publication du RFC : Mai 2022
Auteur(s) du RFC : C. Huitema (Private Octopus), S. Dickinson (Sinodun IT), A. Mankin (Salesforce)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF dprive
Première rédaction de cet article le 22 mai 2022


Ce nouveau RFC complète la série des mécanismes de protection cryptographique du DNS. Après DoT (RFC 7858) et DoH (RFC 8484), voici DoQ, DNS sur QUIC. On notera que bien que QUIC ait été conçu essentiellement pour les besoins de HTTP, c'est le DNS qui a été la première application normalisée de QUIC.

Fonctionnellement, DoQ est très proche de ses prédécesseurs, et offre les mêmes services de sécurité, confidentialité, grâce au chiffrement, et authentification du serveur, via le certificat de celui-ci. L'utilisation du transport QUIC permet quelques améliorations, notamment dans le « vrai » parallélisme. Contrairement à DoT (RFC 7858) et DoH (RFC 8484), DoQ peut être utilisé pour parler à un serveur faisant autorité aussi bien qu'à un résolveur.

Notez que le terme de DoQ (DNS over QUIC) n'apparait pas dans le RFC de terminologie DNS, le RFC 8499. Il sera normalement dans son successeur.

Logiquement, DoQ devrait faire face aux mêmes problèmes politiques que ceux vécus par DoH (voir aussi mon article dans Terminal) mais cela n'a pas été encore le cas. Il faut dire qu'il y a peu de déploiements (ne comptez pas installer DoQ comme serveur ou client tout de suite, le code est loin d'être disponible partout).

Le cahier des charges de DoQ est (sections 1 et 3 du RFC) :

  • Protection contre les attaques décrites dans le RFC 9076.
  • Même niveau de protection que DoT (RFC 7858, avec notamment les capacités d'authentification variées du RFC 8310). Rappelez-vous que QUIC est toujours chiffré (actuellement avec TLS, cf. RFC 9001).
  • Meilleure validation de l'adresse IP source qu'avec le classique DNS sur UDP, grâce à QUIC.
  • Pas de limite de taille des réponses, quelle que soit la MTU du chemin.
  • Diminution de la latence, toujours grâce à QUIC et notamment ses possibilités de connexion 0-RTT (RFC 9000, section 5), ses procédures de récupération en cas de perte de paquets (RFC 9002) et la réduction du head-of-line blocking, chaque couple requête/réponse étant dans son propre ruisseau.

En revanche, DoQ n'esssaie pas de :

  • Contourner le blocage de QUIC que font certaines middleboxes (DoH est meilleur, de ce point de vue). La section 3.3 du RFC détaille cette limitation de DoQ : il peut être filtré trop facilement, son trafic se distinguant nettement d'autres trafics.
  • Ou de permettre des messages du serveur non sollicités (pour cela, il faut utiliser le RFC 8490).

DoQ utilise QUIC. QUIC est un protocole de transport généraliste, un concurrent de TCP. Plusieurs protocoles applicatifs peuvent utiliser QUIC et, pour chacun de ces protocoles, cela implique de définir comment sont utilisés les ruisseaux (streams) de QUIC. Pour HTTP/3, cela sera fait dans un futur RFC et, ironiquement, le DNS est donc le premier protocole à être normalisé pour une utilisation sur QUIC. Notez qu'une autre façon de faire du DNS sur QUIC est de passer par DoH et HTTP/3 (c'est parfois appelé DoH3, terme trompeur) mais cette façon n'est pas couverte dans notre RFC, qui se concentre sur DoQ, du DNS directement sur QUIC, sans HTTP.

La spécification de DoQ se trouve en section 4. Elle est plutôt simple, DoQ étant une application assez directe de QUIC. Comme DoQ utilise QUIC, il y a forcément un ALPN, en l'occurrence via l'identificateur doq.

Le port, quant à lui, est par défaut 853, également nommé domain-s. C'est donc le même que DoT, et aussi le même que le DNS sur DTLS (RFC 8094, protocole expérimental, jamais vraiment mis en œuvre et encore moins déployé, et qui est de toute façon distinguable du trafic QUIC, cf. section 17.2 du RFC 9000). Bien sûr, un client et un serveur DNS majeurs et vaccinés peuvent toujours se mettre d'accord sur un autre port (mais pas 53, réservé au DNS classique). Cette utilisation d'un port spécifique à DoQ est un des points qui le rend vulnérable au filtrage, comme vu plus haut. Utiliser 443 peut aider. (Le point a été chaudement discuté à l'IETF, entre défenseurs de la vie privée et gestionnaires de réseau qui voulaient pouvoir filtrer facilement les protocoles de leur choix. Si on utilise le port 443, il faut se rappeler que l'ALPN est pour l'instant en clair, la lutte de l'épée et de la cuirasse va donc continuer.)

Plus important, la question de la correspondance entre les messages DNS et les ruisseaux QUIC. La règle est simple : pour chaque requête DNS, un ruisseau est créé. La première requête sur une connexion donnée sera donc sur le ruisseau 0 (RFC 9000, section 2.1), la deuxième sur le ruisseau 4, etc. Si les connexions QUIC sont potentiellement de longue durée, en revanche, les ruisseaux ne servent qu'une fois. Le démultiplexage des réponses est assuré par QUIC, pas par le DNS (et l'identificateur de requête DNS est donc obligatoirement à zéro, puisqu'inutile). Le parallélisme est également fourni par QUIC, client et serveur n'ont rien de particulier à faire. Il est donc recommandé de ne pas attendre une réponse pour envoyer les autres questions. Les messages DNS sont précédés de deux octets indiquant leur longueur, comme avec TCP.

Comme avec TCP, client et serveur ont le droit de garder un œil sur les ruisseaux et les connexions inactifs, et de les fermer d'autorité. La section 5.5 donne des détails sur cette gestion de connexion, mais le RFC 7766 est également une bonne lecture (voir aussi le RFC 9103 pour le cas des transferts de zones).

DoQ introduit quelques codes d'erreur à lui (RFC 9000, section 20.2), comme DOQ_INTERNAL_ERROR (quelque chose s'est mal passé), DOQ_PROTOCOL_ERROR (quelqu'un n'a pas lu le RFC, par exemple l'identificateur de requête était différent de zéro) ou DOQ_EXCESSIVE_LOAD (trop de travail tue le travail).

Un des gros avantages de QUIC est le 0-RTT, où des données sont envoyées dès le premier paquet, ce qui réduit nettement la latence. Cela implique que le client ait déjà contacté le serveur avant, mémorisant les informations qui seront données au serveur pour qu'il retrouve la session à reprendre. C'est cool, mais cela pose d'évidents problèmes de vie privée (ces informations mémorisées sont une sorte de cookie, et permettent le suivi à la trace d'un client). D'ailleurs, en parlant de vie privée, le RFC signale aussi (section 5.5.4) que la possibilité de migrer une connexion QUIC d'une adresse IP à l'autre a également des conséquences pour la traçabilité.

Autre piège avec le 0-RTT, il ne protège pas contre le rejeu et il ne faut donc l'utiliser que pour des requêtes DNS idempotentes comme QUERY (le cas le plus courant) ou NOTIFY (qui change l'état du serveur, mais est idempotent). Bon, de toute façon, un serveur peut toujours être configuré pour ne pas accepter de 0-RTT, et répondre alors REFUSED (avec un code d'erreur étendu - RFC 8914 - Too Early).

La section 5 du RFC liste les exigences auxquelles doivent se soumettre les mises en œuvre de DoQ. Le client doit authentifier le serveur (cf. RFC 7858 et RFC 8310, mais aussi RFC 8932, sur les bonnes pratiques). Comme tous les serveurs ne géreront pas DoQ, en tout cas dans un avenir prévisible, les clients doivent être préparés à ce que ça échoue et à réessayer, par exemple en DoT.

QUIC ne dissimule pas forcément la taille des messages échangés, et celle-ci peut être révélatrice. Malgré le chiffrement, la taille d'une requête ou surtout d'une réponse peut donner une idée sur le nom demandé. Le RFC impose donc l'utilisation du remplissage, soit par la méthode QUIC générique de la section 19.1 du RFC 9000, soit par la méthode spécifique au DNS du RFC 7830. La première méthode est en théorie meilleure car elle dissimule d'autres métadonnées, et qu'elle tient compte de davantage d'éléments, mais les bibliothèques QUIC n'exposent pas forcément dans leur API de moyen de contrôler ce remplissage. Le RFC recommande donc aux clients et serveurs DoQ de se préparer à faire le remplissage eux-mêmes (en relisant bien le RFC 8467 avant).

Un petit retour sur la protection de la vie privée en section 7. Cette section rappele l'importance de lire et suivre le RFC 8932 si vous gérez un service de résolution DNS sécurisé (DoQ ou pas DoQ). Et elle insiste sur le fait que des fonctions de QUIC très pratiques pour diminuer la latence à l'établissement de la connexion, notamment le 0-RTT, ont des conséquences pour la vie privée, en permettant de suivre un même utilisateur (plus exactement une même machine). Et cela marche même si la machine a changé d'adresse IP entretemps. On peut aussi dire que le problème de QUIC est de permettre des sessions de très longue durée (que ce soit une vraie session unique, ou bien une « session virtuelle », formée en reprenant une session existante avec le 0-RTT) et que de telles sessions longues, excellentes pour les performances, le sont forcément moins pour l'intimité.

Les mises en œuvre de DoQ, maintenant. La société AdGuard a produit du code, dont un serveur et un client en Go, dnslookup. (Regardez l'exposé du directeur technique de cette société à l'OARC.) Voici un exemple de compilation, puis d'utilisation de dnslookup :


% git clone https://github.com/ameshkov/dnslookup.git
%  cd dnslookup
% make
% ./dnslookup www.bortzmeyer.org quic://dns.adguard.com

On utilisait le serveur DoQ public d'AdGuard. Officiellement, NextDNS en a également un mais je n'arrive pas à l'utiliser :

% ./dnslookup www.bortzmeyer.org quic://3e4935.dns.nextdns.io
...
2022/05/22 08:16:33 Cannot make the DNS request: opening quic session to quic://3e4935.dns.nextdns.io:853: timeout: no recent network activity
  

Notez que si vous voulez utiliser dnslookup avec un serveur dont le certificat n'est pas valide, il faut mettre la variable d'environnement VERIFY à 0 (cela ne semble pas documenté).

Il existe une autre mise en œuvre de DoQ, quicdoq, écrite en C. Elle dépend de la bibliothèque QUIC picoquic qui, à son tour, dépend de picotls, dont la compilation n'est pas toujours évidente. D'une manière générale, les bibliothèques QUIC sont souvent récentes, parfois expérimentales, et ne marchent pas toujours du premier coup. Mais si vous arrivez à compiler les dépendances de quicdoq, vous pouvez lancer le serveur ainsi :

% ./quicdoq_app -p 8053 -d 9.9.9.9
  

Puis le client :

% ./quicdoq_app ::1 8053 foobar:SOA bv:NS www.bortzmeyer.org:AAAA
  

Le logiciel de test de performances Flamethrower, écrit en C++ a une branche DoQ en cours de développement.

Le logiciel en Python aioquic ne semble pouvoir interagir qu'avec lui-même. Vu les messages d'erreur (quelque chose à propos de not enough bytes), je soupçonne qu'il utilise l'encodage des débuts de DoQ, quand il n'y avait pas encore le champ de deux octets au début des messages. Même avec lui-même, il a des exigences pénibles en matière de certificat (pas de certificats auto-signés, obligation que le nom du serveur soit dans le SAN - Subject Alternative Name, pas seulement dans le sujet).

Pour PowerDNS, il n'y a pour l'instant qu'un ticket. Et pour Unbound, c'est en cours d'analyse.

Dans les bibliothèques DNS, un travail est en cours pour go-dns.

Pour finir, vous pouvez regarder la présentation de DoQ par une des auteures du RFC au RIPE 84. Et un des premiers articles de recherche sur DoQ est « One to Rule them All? A First Look at DNS over QUIC ».


Téléchargez le RFC 9250


L'article seul

RFC 9239: Updates to ECMAScript Media Types

Date de publication du RFC : Mai 2022
Auteur(s) du RFC : M. Miller, M. Borins (GitHub), M. Bynens (Google), B. Farias
Pour information
Réalisé dans le cadre du groupe de travail IETF dispatch
Première rédaction de cet article le 11 mai 2022


Ce RFC documente les types de médias pour le langage de programmation JavaScript (dont le nom officiel est ECMAScript, qu'on retrouve dans le titre de ce RFC). Il remplace le RFC 4329 et le principal changement est que le type recommandé est désormais text/javascript et non plus application/javascript.

Si vous voulez vous renseigner en détail sur JavaScript, notre RFC recommande de lire la norme ECMA, en https://262.ecma-international.org/12.0/. Cette norme est développée en dehors de l'IETF et le choix des types de médias (aussi appelés types MIME, cf. RFC 2046) n'est donc pas forcément en accord avec les règles de l'IETF (RFC 6838). C'est pour cela que l'IESG a ajouté une note d'avertissement au RFC. Mais, bon, ce n'est pas trop grave en pratique. Le type recommandé est donc désormais text/javascript. D'autres types existent, application/ecmascript, application/javascript, etc, mais ils sont maintenant considérés comme dépassés.

Il existe plusieurs versions de la norme JavaScript et d'autres apparaitront peut-être dans le futur. Mais le type officiel n'indique pas de version (il a existé des propositions comme text/javascript1.4) et compte que toutes ces versions sont suffisamment compatibles pour qu'on ne gère pas la complexité d'avoir plusieurs types. Normalement, ECMA s'engage à ne pas bouleverser le langage.

Le choix de text/ est contestable car la définition originale de text/ dans le RFC 2045 prévoyait plutôt application/ pour les programmes. Le RFC 4329 enregistrait les types text/javascript et application/javascript, et recommandait le application/javascript (en accord avec ce que dit le RFC 6838). Aujourd'hui, c'est le contraire, text/javascript est le préféré. D'une manière générale, application/ n'a guère été utilisé (pas seulement dans le cas de JavaScript). (Personnellement, cela me convient très bien : pour moi, si ça peut s'afficher avec cat et s'éditer avec vi, c'est du texte.)

JavaScript est donc officiellement du texte, et la section 4 de notre RFC précise : du texte en UTF-8. Le paramètre charset est donc facultatif (même si le RFC 6838 dit le contraire). Si vous aimez les détails d'encodage, la section 4 vous ravira (c'est l'un des points qui a suscité le plus de discussion à l'IETF).

Le type text/javascript est enregistré à l'IANA ; les types comme application/javascript sont marqués comme dépassés. Même chose pour text/ecmascript. Le nom officiel de JavaScript est ECMAscript, puisque normalisé à l'ECMA mais personne n'utilise ce terme. (Il faut quand même noter que JavaScript est un terme publicitaire mensonger puisqu'il avait été choisi par le marketing pour profiter de la popularité - à l'époque - de Java, un langage avec lequel il n'a rien à voir.) Enfin, les types comme text/x-javascript qu'on voit parfois trainer datent d'avant le RFC 6648, qui abandonnait les identificateurs semi-privés commençant par x-.

La section 5 couvre les questions de sécurité. Elle est très longue car l'envoi de JavaScript à un programme qui l'exécutera (ce qui est très courant sur le Web) pose plein de problèmes de sécurité. Le RFC rappelle que l'exécution automatique d'un programme fourni par un tiers est évidemment intrinsèquement dangereuse, et doit se faire dans un bac à sable. Parmi les dangers (mais il y en a beaucoup d'autres !) le déni de service puisque JavaScript est un langage de Turing et permet donc, par exemple, des boucles infinies.

L'annexe B du RFC résume les changements depuis le RFC 4329 : le principal est bien sûr l'abandon de application/javascript au profit de text/javascript. Il y a aussi l'ajout de quelques détails comme une faille de sécurité nouvelle, et le cas des modules JavaScript.

Ah, un point de détail cité au détour d'un paragraphe du RFC : il n'y a pas de norme pour les identificateurs de fragments dans un URI pointant vers une ressource de type text/javascript. Si https://code.example/js/foreach.js#l23 pointe vers du JavaScript, la signification du #l23 (l'identificateur de fragment) n'est pas spécifiée.


Téléchargez le RFC 9239


L'article seul

RFC 9234: Route Leak Prevention and Detection Using Roles in UPDATE and OPEN Messages

Date de publication du RFC : Mai 2022
Auteur(s) du RFC : A. Azimov (Qrator Labs & Yandex), E. Bogomazov (Qrator Labs), R. Bush (IIJ & Arrcus), K. Patel (Arrcus), K. Sriram (USA NIST)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF idr
Première rédaction de cet article le 25 mai 2022


Vous savez sans doute que l'Internet repose sur le protocole de routage BGP et que ce protocole a été cité dans des accidents (voire des attaques) spectaculaires, par exemple lorsqu'un routeur BGP annonçait ou réannonçait des routes qu'il n'aurait pas dû annoncer (ce qu'on nomme une fuite de routes). Si BGP lui-même est pair-à-pair, en revanche, les relations entre les pairs ne sont pas forcément symétriques et des règles sont largement admises ; par exemple, on n'est pas censé annoncer à un transitaire des routes apprises d'un autre transitaire. Ce RFC étend BGP pour indiquer à l'ouverture de la session le type de relations qu'on a avec son pair BGP, ce qui permet de détecter plus facilement certaines fuites de routes.

La solution proposée s'appuie sur un modèle des relations entre opérateurs, le modèle « sans vallée » (valley-free, même si ce terme n'est pas utilisé dans le RFC). On le nomme aussi modèle Gao-Rexford. Ce modèle structure ces relations de telle façon à ce que le trafic aille forcément vers un opérateur aussi ou plus important (la « montagne »), avant de « redescendre » vers la destination ; le trafic ne descend pas dans une « vallée », sauf si elle est la destination finale. Le but est de permettre un routage optimum et d'éviter boucles et goulets d'étranglement, mais ce modèle a aussi une conséquence politico-économique, maintenir la domination des gros acteurs (typiquement les Tier-1). Les relations entre participants à une session BGP sont de type Client-Fournisseur ou Pair-Pair, et le trafic va toujours dans le sens du client vers le fournisseur, sauf pour les destinations finales (on n'utilise donc pas un pair pour du transit, c'est-à-dire pour joindre d'autres réseaux que ceux du pair).

En raison de ce modèle, un routeur BGP n'est pas censé annoncer à un transitaire des routes apprises d'un autre transitaire, ou annoncer à un pair des routes apprises d'un transitaire, ou bien apprises d'un autre pair (RFC 7908). Une fuite de routes est une annonce qui viole cette politique (qu'elle soit explicite ou implicite).

Traditionnellement, on empêche ces fuites par des règles dans la configuration du routeur. Par exemple, le client d'un transitaire va bloquer l'exportation par défaut, puis lister explicitement les routes qu'il veut annoncer. Et le transitaire va bloquer l'importation par défaut, et lister ensuite les routes qu'il acceptera de son client. Ce nouveau RFC ajoute un autre mécanisme, où la relation entre les deux partenaires BGP est explicitement marquée comme Client-Fournisseur ou Pair-Pair, facilitant la détection des fuites. Un concept qui était auparavant purement business, le type de relation entre acteurs BGP, passe ainsi dans le protocole.

Le RFC utilise donc ces termes, pour désigner la place d'un acteur BGP dans le processus de routage :

  • Fournisseur (Provider) : peut envoyer n'importe quelle route (un transitaire est un Fournisseur).
  • Client (Customer) : ne peut envoyer que ses propres routes, ou bien celles apprises d'un de ses clients (l'opérateur qui est Client pour une relation BGP peut être Fournisseur pour une autre).
  • Serveur de routes (Route Server) : peut envoyer toutes les routes qu'il connait à ses clients.
  • Client d'un serveur de routes (Route Server Client) : ne peut envoyer au serveur de routes que ses propres routes, ou bien celles apprises d'un de ses clients.
  • Pair (Peer) : ne peut envoyer à un de ses pairs que ses propres routes, ou bien celles apprises d'un de ses clients.

Une violation de ces règles est une fuite de routes (RFC 7908). Le RFC précise qu'il s'agit de relations « techniques », qu'elles n'impliquent pas forcément une relation business mais, en pratique, l'échange entre pairs est souvent gratuit et la relation Client-Fournisseur payante. Le RFC précise aussi qu'il peut exister des cas plus complexes, comme une relation Client-Fournisseur pour certains préfixes IP et Pair-Pair pour d'autres.

Bon, assez de politique et de business, place à la technique et au protocole. Le RFC définit une nouvelle capacité (RFC 5492) BGP, Role, code 9 et dont la valeur, stockée sur un octet, indique un des rôles listés ci-dessus (0 pour Fournisseur, 3 pour Client, 4 pour Pair, etc). D'autres rôles pourront être ajoutés dans le futur (politique « Examen par l'IETF », cf. RFC 8126). Ce rôle indique la place de l'AS et est configuré avec la session BGP (rappelez-vous qu'un AS peut être Client d'un côté et Fournisseur de l'autre). À l'ouverture de la connexion, les routeurs vérifient la compatibilité des rôles (si tous les deux annoncent qu'ils sont Fournisseur, c'est un problème, d'où un nouveau code d'erreur BGP, Role mismatch).

Une fois que les deux routeurs sont d'accord sur les rôles respectifs de leurs AS, les routes annoncées peuvent être marquées avec un nouvel attribut, OTC (Only To Customer, code 35), dont la valeur est un numéro d'AS. Une route ainsi marquée ne sera acceptée que si elle vient d'un Fournisseur, ou d'un pair dont le numéro d'AS coïncide. Autrement, elle sera considérée comme résultant d'une fuite.

Ah, et pour les cas compliqués dont on a parlé plus haut, comme les rôles différents pour chaque préfixe ? Dans ce cas-là, le mécanisme des rôles de ce RFC n'est pas adapté et ne doit pas être utilisé.

Ce système des rôles est apparemment mis en œuvre dans des patches (non encore intégrés ?) pour FRRouting et BIRD. Par exemple, pour FRRouting, on configurerait :

neighbor 2001:db8:999::1 local-role customer
  

Pour BIRD, cela serait :

configuration
    ...
    protocol bgp {
        ...
        local_role customer;
    }
  

Et la gestion des rôles devrait être bientôt dans BGPkit. Par contre, je ne sais pas pour Cisco ou Juniper. Si quelqu'un a des informations…


Téléchargez le RFC 9234


L'article seul

RFC 9233: IDNA2008 and Unicode 12.0.0

Date de publication du RFC : Mars 2022
Auteur(s) du RFC : P. Faltstrom (Netnod)
Chemin des normes
Première rédaction de cet article le 24 avril 2022


La norme pour les noms de domaine en Unicode, dite « IDNA 2008 », prévoit une révision à chaque nouvelle version d'Unicode pour éventuellement s'adapter à des changements dus à ces nouvelles versions. Ce processus de révision a pas mal cafouillé (euphémisme), et ce RFC doit donc traiter d'un coup les versions 6 à 12 d'Unicode.

Le fond du problème est que l'ancienne norme sur les IDN (RFC 3490) était strictement liée à une version donnée d'Unicode et qu'il fallait donc une nouvelle norme pour chacune des versions annuelles d'Unicode. Vu le processus de publication d'une norme à l'IETF, ce n'était pas réaliste. La seconde norme IDN, « IDN 2 » ou « IDN 2008 » (bien qu'elle soit sortie en 2010) remplaçait les anciennes tables fixes de caractères autorisés ou interdits par un algorithme, à faire tourner à chaque sortie d'une version d'Unicode pour produire les tables listant les caractères qu'on peut accepter dans un nom de domaine internationalisé (le mécanisme exact, utilisant les propriétés des caractères listées dans la norme Unicode, figure dans le RFC 5892). En théorie, c'était très bien. En pratique, malgré les règles de stabilité d'Unicode, il se produisait parfois des problèmes. Comme le documente le RFC 8753, un caractère peut ainsi passer d'interdit à autorisé, ce qui n'est pas grave mais aussi dans certains cas d'autorisé à interdit ce qui est bien plus embêtant : que faire des noms déjà réservés qui utilisent ce caractère ? En général, il faut ajouter une exception manuelle, ce qui justifie un mécanisme de révision de la norme IDN, mis en place par ce RFC 8753. Ce nouveau RFC 9233 est le premier RFC de révision. Heureusement, cette fois, aucune exception manuelle n'a été nécessaire.

La précédente crise était due à Unicode version 6 qui avait créé trois incompatibilités (RFC 6452). Une seule était vraiment gênante, le caractère , qui, autorisé auparavant, était devenu interdit suite au changement de ses propriétés dans la norme Unicode. Le RFC 6452 avait documenté la décision de ne rien faire pour ce cas, ce caractère n'ayant apparemment jamais été utilisé. Unicode 7 a ajouté un autre problème, le , qui était un cas différent (la possibilité de l'écrire de plusieurs façons), et la décision a été prise de faire désormais un examen formel de chaque nouvelle version d'Unicode. Mais cet examen a été souvent retardé et voilà pourquoi, alors qu'Unicode 13 est sorti (ainsi qu'Unicode 14 depuis), ce nouveau RFC ne traite que jusqu'à la version 12.

Passons maintenant à l'examen des changements apportés par les versions 7 à 12 d'Unicode, fait en section 3 du RFC :

  • À part le cas du cité plus haut, Unicode 7 n'a pas apporté de changements gênants pour IDN (par exemple, U+17B4 (caractère non visible) a changé de propriétés mais il était interdit pour IDN et le reste),
  • Unicode 8, Unicode 9 et Unicode 10 n'ont appporté aucun changement gênant,
  • Unicode 11 a changé les propriétés de certains caractères existants mais le résultat pour IDN ne change pas (par exemple, 𑨇, qui était autorisé, le reste),
  • Et Unicode 12 ? Rien de problématique.

En Unicode 11, 𑇉 qui passe d'interdit à autorisé, était un cas peu gênant. Le RFC prend donc la décision de ne pas ajouter d'exception pour ce caractère peu commun.

Voilà, arrivé ici, vous pensez peut-être que cela fait beaucoup de bruit pour rien puisque finalement les différentes versions d'Unicode n'ont pas créé de problème. Mais c'est justement pour s'assurer de cela que cet examen était nécessaire.

Pour compliquer davantage les choses, on notera qu'il existe encore sans doute (section 2.3 du RFC) des déploiements d'IDN qui en sont restés à la première version (celle du RFC 3490) voire qui sont un mélange des deux versions d'IDN, en ce qui concerne l'acceptation ou le refus des caractères.

En avril 2022, le travail pour Unicode 13 ou Unicode 14 n'a apparemment pas encore commencé…


Téléchargez le RFC 9233


L'article seul

RFC 9229: IPv4 Routes with an IPv6 Next Hop in the Babel Routing Protocol

Date de publication du RFC : Mai 2022
Auteur(s) du RFC : J. Chroboczek (IRIF, University of Paris)
Expérimental
Réalisé dans le cadre du groupe de travail IETF babel
Première rédaction de cet article le 11 mai 2022


Voici une extension sympathique qui réjouira tous les amateurs de routage IP. Elle permet à un routeur qui parle le protocole de routage Babel d'annoncer un préfixe IPv4 où le routeur suivant pour ce préfixe n'a pas d'adresse IPv4 sur cette interface.

Un petit rappel de routage : les annonces d'un routeur qui parle un protocole de routage dynamique comme Babel (RFC 8966) comprennent un préfixe IP (comme 2001:db8:543::/48) et l'adresse IP du routeur suivant (next hop dans la langue de Radia Perlman). Traditionnellement, le préfixe et l'adresse du routeur suivant étaient de la même version (famille) : tous les deux en IPv4 ou tous les deux en IPv6. Mais, si on veut router IPv6 et IPv4, cela consomme une adresse IP par interface sur chaque routeur, or les adresses IPv4 sont désormais une denrée très rare. D'où la proposition de ce RFC : permettre des annonces d'un préfixe IPv4 avec une adresse de routeur suivant en IPv6. (Notez que cela ne concerne pas que Babel, cela pourrait être utilisé pour d'autres protocoles de routage dynamique.)

La section 1 du RFC résume ce que fait un protocole de routage. Son but est de construire des tables de routage, où chaque entrée de la table est indexée par un préfixe d'adresses IP et a une valeur, l'adresse du routeur suivant. Par exemple :

   destination                      next hop
2001:db8:0:1::/64               fe80::1234:5678%eth0
203.0.113.0/24                  192.0.2.1    
  

Lorsqu'un routeur doit transmettre un paquet, il regarde dans cette table et trouve l'adresse du routeur suivant. Il va alors utiliser un protocole de résolution d'adresses (ARPRFC 826 - pour IPv4, NDRFC 4861 - pour IPv6) pour trouver l'adresse MAC du routeur suivant. Rien dans cette procédure n'impose que le préfixe de destination et l'adresse du routeur suivant soient de la même version d'IP. Un routeur qui veut transmettre un paquet IPv4 vers un routeur dont il ne connait que l'adresse IPv6 procède à la résolution en adresse MAC, puis met simplement le paquet IPv4 dans une trame portant l'adresse MAC en question (l'adresse IPv6 du routeur suivant n'apparait pas dans le paquet).

En permettant des annonces de préfixes IPv4 avec un routeur suivant en IPv6, on économise des adresses IPv4. Un réseau peut fournir de la connectivité IPv4 sans avoir d'adresses IPv4, à part au bord. Et comme les adresses IPv6 des routeurs sont des adresses locales au lien allouées automatiquement (cf. RFC 7404), on peut avoir un réseau dont le cœur n'a aucune adresse statique, ce qui peut faciliter sa gestion.

Notre RFC documente donc une extension au protocole Babel (qui est normalisé dans le RFC 8966), nommée v4-via-v6. (Comme dit plus haut, le principe n'est pas spécifique à Babel, voir le RFC 5549 pour son équivalent pour BGP.)

Bon, le concret, maintenant. Les préfixes annoncés en Babel sont précédés de l'AE (Address Encoding), un entier qui indique la version (famille) du préfixe. Ce RFC crée un nouvel AE, portant le numéro 4, qui a le même format que l'AE 1 qui servait à IPv4. Une annonce d'un préfixe ayant l'AE 4 devra donc contenir un préfixe IPv4 et un routeur suivant en IPv6. Un routeur qui sait router IPv4 mais n'a pas d'adresse IPv4 sur une de ses interfaces peut donc quand même y annoncer les préfixes connus, en les marquant avec l'AE 4 et en mettant comme adresse l'adresse IPv6 pour cette interface. (Cet AE est uniquement pour les préfixes, pas pour l'indication du routeur suivant.)

Les routeurs qui ne gèrent pas l'extension v4-via-v6 ignoreront cette annonce, comme ils doivent ignorer toutes les annonces portant un AE inconnu (RFC 8966). Pour cette raison, si un routeur a une adresse IPv4 sur une interface, il faut qu'il utilise des annonces traditionnelles, avec l'AE 1, pour maximiser les chances que son annonce soit acceptée.

Arrivé ici, mes lectrices et mes lecteurs, qui sont très malins, se demandent depuis longtemps « mais un routeur doit parfois émettre des erreurs ICMP (RFC 792), par exemple s'il n'a pas d'entrée dans sa table pour cette destination ». Comment peut-il faire s'il n'a pas d'adresse sur l'interface où il a reçu le paquet coupable ? Ne rien émettre n'est pas acceptable, certains protocoles en dépendent. C'est par exemple le cas de la découverte de la MTU du chemin, documentée dans le RFC 1191, qui a besoin des messages ICMP Packet too big. Certes, il existe un algorithme de découverte de cette MTU du chemin qui est entièrement de bout en bout, et ne dépend donc pas des routeurs et de leurs messages (RFC 4821). Mais ICMP sert à d'autres choses, on ne peut pas y renoncer.

Si le routeur Babel a une adresse IPv4 quelque part, sur une de ses interfaces, il peut l'utiliser comme adresse IP source pour ses messages ICMP. S'il n'en a pas, il peut toujours utiliser 192.0.0.8 comme suggéré par la section 4.8 du RFC 7600. Bien sûr, si tout le monde le fait, des outils d'administration du réseau très pratiques comme traceroute seront moins utiles.

La nouvelle extension peut soulever des questions de sécurité (section 6 du RFC). Par exemple, si l'administrateur réseaux croyait que, parce que les routeurs n'avaient pas d'adresse IPv4 sur une interface, les paquets IPv4 ne seraient pas traités sur cette interface, cette supposition n'est plus vraie. Ainsi, une île de machines IPv4 qui se croyaient séparées de l'Internet IPv4 par un ensemble de routeurs qui n'avaient pas d'adresse IPv4 de leur côté peut se retrouver subitement connectée. Si ce n'est pas ce qu'on veut, il faut penser à ne pas se contenter du protocole de routage pour filtrer, mais aussi à filtrer explicitement IPv4.

Question mise en œuvre, cette extension figure dans babeld (voir ici un compte-rendu d'expérience) à partir de la version 1.12, ainsi que dans BIRD.


Téléchargez le RFC 9229


L'article seul

RFC 9228: Delivered-To Email Header Field

Date de publication du RFC : Avril 2022
Auteur(s) du RFC : D. Crocker (Brandenburg InternetWorking)
Expérimental
Première rédaction de cet article le 14 avril 2022


Le courrier électronique est souvent plus compliqué et plus varié que ne le croient certains utilisateurs. Par exemple, rien ne garantit que l'adresse à laquelle un message est livré soit listée dans les champs de l'en-tête (RFC 5322) comme To: ou Cc:. Cette adresse de destination est en effet séparément gérée, dans le protocole SMTP (RFC 5321) et ses comandes RCPT TO. Et puis un message peut être relayé, il peut y avoir plusieurs livraisons successives. Bref, quand on a un message dans sa boite aux lettres, on ne sait pas forcément quelle adresse avait servi. D'où ce RFC expérimental qui propose d'élargir le rôle du champ Delivered-To: pour en faire un bon outil d'information.

Ce champ existe déjà et on le voit parfois apparaitre dans les en-têtes, par exemple dans un message que je viens de recevoir :

Delivered-To: monpseudo@sources.org
  

Mais il n'est pas vraiment normalisé, son contenu exact peut varier et, en pratique, lorsqu'il y a eu plusieurs délivrances successives suivies de transmissions à une autre adresse, il ne reste parfois qu'une occurrence de ce champ, la plus récente. Difficile donc de compter dessus.

Mais c'est quoi, la livraison d'un message ? Comme définie par le RFC 5598, dans sa section 4.3.3, c'est un transfert de responsabilité d'un MTA vers un MDA comme procmail. Il peut y avoir plusieurs délivrances successives par exemple si le MDA, au lieu de simplement écrire dans la boite aux lettres de l'utilisateur, fait suivre le message à une autre adresse. Un exemple typique est celui d'une liste de diffusion, où le message va être délivré à la liste puis, après transmission par le logiciel de gestion de listes, à chaque utilisateur (dont les MDA renverront peut-être le message, créant de nouvelles livraisons).

Pourquoi est-il utile d'avoir de l'information sur ces livraisons successives ? Outre la curiosité, une motivation importante est le débogage. S'il y a des problèmes de livraison, la traçabilité est essentielle à l'analyse. Une autre motivation est la détection automatique de boucles, un problème souvent compliqué.

On l'a dit, Delivered-To: existe déjà, même s'il n'était normalisé dans aucun RFC, bien qu'il soit cité dans des exemples, comme dans le RFC 5193. Ce RFC 9228 enregistre le champ (selon la procédure du RFC 3864), et prévoit d'étendre son application. (Une tentative de normalisation est en cours dans draft-duklev-deliveredto.) Du fait de cette absence de normalisation, il existe de nombreuses variations dans l'utilisation de Delivered-To:. Par exemple, si la plupart des logiciels mettent comme valeur une adresse de courrier et rien d'autre, certains ajoutent des commentaires. Notons que le champ Received: est souvent utilisé de la même façon, via sa clause for. On peut ainsi trouver (regardez le for) :

    
Received: from bendel.debian.org (bendel.debian.org [82.195.75.100])
        (using TLSv1.3 with cipher TLS_AES_256_GCM_SHA384 (256/256 bits)
        key-exchange X25519 server-signature RSA-PSS (2048 bits) server-digest SHA256)
        (No client certificate requested)
        by ayla.bortzmeyer.org (Postfix) with ESMTPS id 6D245A00D9
        for <monpseudo@sources.org>; Wed, 16 Feb 2022 13:22:03 +0100 (CET)

  

Là encore, il n'y a pas de normalisation et il semble qu'on ne puisse pas compter sur cette clause for. Par exemple, elle n'indique pas forcément une livraison mais peut être utilisée pour une simple transmission d'un serveur à un autre.

Venons-en à la définition de l'utilisation de Delivered-To: proposée par notre RFC dans sa section 4 :

  • Le champ Delivered-To: est ajouté uniquement lors d'une livraison,
  • sa valeur est l'adresse de courrier utilisée pour cette livraison (une adresse unique, jamais de liste),
  • si une réécriture de l'adresse est faite, on rajoute un Delivered-To: avec l'adresse réécrite,
  • comme il peut y avoir plusieurs Delivered-To: (en cas de livraisons multiples), le logiciel qui en ajoute un doit le mettre en haut (comme pour les autres champs de trace de l'en-tête, par exemple Received:, cf. RFC 5321, section, 4.1.1.4), l'ordre chronologique des Delivered-To: sera donc de bas en haut,
  • et donc les logiciels ne doivent pas réordonner les Delivered-To: ou en supprimer, sous peine de casser cette chronologie.

En conséquence, si un logiciel qui va ajouter un Delivered-To: avec une certaine adresse voit un Delivered-To: avec la même adresse, il peut être sûr qu'il y a une boucle. Voici un exemple de deux Delivered-To: différents, en raison du passage par une liste de diffusion (le message comportait évidemment bien d'autres champs dans son en-tête). La liste a été la première à traiter le message, la livraison finale ayant eu lieu après (donc plus haut dans le message, cf. section 5 du RFC) :

Delivered-To: monpseudo@sources.org
Delivered-To: lists-debian-user-french@bendel.debian.org
  

Le RFC donne un exemple imaginaire mais plus détaillé (j'ai raccourci les exemples du RFC, référez-vous à lui pour avoir les Received: et autres détails). D'abord, le message est émis par Ann :


From: Ann Author <aauthor@com.example>
Date: Mon, 25 Jan 2021 18:29:00 -0500
To: list@org.example
Subject: Sending through a list and alias
Sender: Ann Author <aauthor@com.example>   

  

Ce message a été envoyé à une liste de diffusion. Il est donc désormais :


Delivered-To: list@org.example
From: Ann Author <aauthor@com.example>
Date: Mon, 25 Jan 2021 18:29:06 -0500
To: list@org.example
Subject: Sending through a list and alias

  

Un des abonnés à la liste est alumn@edu.example. Chez lui, le message sera :


Delivered-To: alumn@edu.example
Delivered-To: list@org.example
From: Ann Author <aauthor@com.example>
Date: Mon, 25 Jan 2021 18:29:06 -0500
To: list@org.example
Subject: Sending through a list and alias

Et cet abonné fait suivre automatiquement son courrier à theRecipient@example.net. Le message, dans son état final, sera :

  

Delivered-To: theRecipient@example.net
Delivered-To: alumn@edu.example
Delivered-To: list@org.example
From: Ann Author <aauthor@com.example>
Date: Mon, 25 Jan 2021 18:29:06 -0500
To: list@org.example
Subject: Sending through a list and alias

Voilà, vous savez tout désormais sur l'extension proposée de l'utilisation de Delivered-To:. La section 6 attire toutefois notre attention sur quelques risques. Delivered-To: a comme valeur une donnée personnelle. Donc, attention, cela peut poser des questions de vie privée. Par exemple, la liste des adresses par lesquelles est passé un message peut en révéler plus que ce que le destinataire connaissait. Le problème risque surtout de se poser si quelqu'un fait suivre manuellement un message en incluant tous les en-têtes.

Autre problème potentiel, certains systèmes stockent les messages identiques en un seul exemplaire. Si on écrit à alice@example.com et bob@example.com, le serveur d'example.com pourrait décider de ne stocker qu'un seul exemplaire du message, avec des liens depuis les boites aux lettres d'Alice et Bob. Ce serait évidemment incompatible avec Delivered-To: (et pas question de mettre deux Delivered-To:, on ne veut pas révéler à Alice que Bob a reçu le message et réciproquement).


Téléchargez le RFC 9228


L'article seul

RFC 9224: Finding the Authoritative Registration Data Access Protocol (RDAP) Service

Date de publication du RFC : Mars 2022
Auteur(s) du RFC : M. Blanchet (Viagenie)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF regext
Première rédaction de cet article le 25 avril 2022


Le protocole RDAP d'accès à l'information sur les objets (noms de domaines, adresses IP, etc) stockés dans un registre fonctionne en interrogeant le serveur en HTTP. Encore faut-il trouver le serveur à interroger. Comment le client RDAP qui veut des informations sur 2001:67c:288::2 sait-il à quel serveur demander ? Ce RFC décrit le mécanisme choisi. En gros, l'IANA gère des « méta-services » qui donnent la liste de serveurs RDAP, mais il peut aussi y avoir redirection d'un serveur RDAP vers un autre. Ce RFC remplace le premier RFC sur le sujet, le RFC 7484, avec très peu de changements.

Le protocole RDAP est décrit entre autres dans le RFC 7480 qui précise comment utiliser HTTP pour transporter les requêtes et réponses RDAP. Comme indiqué plus haut, il ne précise pas comment trouver le serveur RDAP responsable d'un objet donné. Le prédécesseur de RDAP, whois, avait exactement le même problème, résolu par exemple en mettant en dur dans le logiciel client tous les serveurs whois connus. En pratique, beaucoup de gens font simplement une requête Google et accordent une confiance aveugle auu premier résultat venu, quel que soit sa source. Au contraire, ce RFC vise à fournir un mécanisme pour trouver la source faisant autorité.

Avant d'exposer la solution utilisée, la section 1 de notre RFC rappelle comment ces objets (noms de domaine, adresses IP, numéros d'AS, etc) sont alloués et délégués. L'IANA délégue les TLD aux registres de noms de domaines, des grands préfixes IP et les blocs de numéros d'AS aux RIR. Il est donc logique que RDAP suive le même chemin : pour trouver le serveur responsable, on commence par demander à l'IANA, qui a déjà les processus pour cela, et maintient les registres correspondants (adresses IPv4, adresses IPv6, numéros d'AS et domaines).

Pour permettre à RDAP de fonctionner, ce RFC demande donc à l'IANA quelques fichiers supplémentaires, au format JSON (RFC 8259), dont le contenu dérive des registres cités plus haut. Et l'IANA doit aussi prévoir des serveurs adaptés à servir ces fichiers, nommés RDAP Bootstrap Service, à de nombreux clients RDAP.

Le format de ces fichiers JSON est décrit dans la section 3 de notre RFC. Chaque bootstrap service contient des métadonnées comme un numéro de version et une date de publication, et il contient un membre nommé services qui indique les URL où aller chercher l'information (la syntaxe formelle figure en section 10). Voici un extrait d'un des fichiers actuels :

 
% curl https://data.iana.org/rdap/ipv4.json
  "description": "RDAP bootstrap file for IPv4 address allocations",
  "publication": "2019-06-07T19:00:02Z",
  "services": [
    [
      [
        "41.0.0.0/8",
        "102.0.0.0/8",
        "105.0.0.0/8",
        "154.0.0.0/8",
        "196.0.0.0/8",
        "197.0.0.0/8"
      ],
      [
        "https://rdap.afrinic.net/rdap/",
        "http://rdap.afrinic.net/rdap/"
      ]
    ],
    ...

On voit que le contenu est un tableau donnant, pour des objets donnés, les URL des serveurs RDAP à contacter pour ces objets indiqués, par exemple pour l'adresse IP 154.3.2.1, on ira demander au serveur RDAP d'AfriNIC en https://rdap.afrinic.net/rdap/.

Le membre publication indique la date de parution au format du RFC 3339. Les URL indiqués se terminent par une barre oblique, le client RDAP a juste à leur ajouter une requête formulée selon la syntaxe du RFC 9082. Ainsi, cherchant des informations sur 192.0.2.24, on ajoutera ip/192.0.2.24 à l'URL de base.

Pour les adresses IP (section 5), les entrées sont des préfixes, comme dans le premier exemple montré plus haut et la correspondance se fait avec le préfixe le plus spécifique (comme pour le routage IP). Les préfixes IPv4 suivent la syntaxe du RFC 4632 et les IPv6 celle du RFC 5952. Voici un exemple IPv6 (légèrement modifié d'un cas réel) :

   [
      [
        "2001:200::/23",
        "2001:4400::/23",
        "2001:8000::/19",
        "2001:a000::/20",
        "2001:b000::/20",
        "2001:c00::/23",
        "2001:e00::/23",
        "2400::/12"
      ],
      [
        "https://rdap.apnic.net/"
      ]
    ],
    [
      [
        "2001:200:1000::/36"
      ],
      [
        "https://example.net/rdaprir2/"
      ]

Si on cherche de l'information sur le préfixe 2001:200:1000::/48, il correspond à deux entrées dans le tableau des services (2001:200::/23 et 2001:200:1000::/36) mais la règle du préfixe le plus long (le plus spécifique) fait qu'on va utiliser 2001:200:1000::/36, et la requête finale sera donc https://example.net/rdaprir2/ip/2001:200:1000::/48.

Pour les domaines (section 4), les entrées des services sont des noms de domaine :

...
       "services": [
         [
           ["net", "com", "org"],
           [
             "https://registry.example.com/myrdap/"
           ]
         ],
         [
           ["foobar.org", "mytld"],
           [
             "https://example.org/"
           ]
         ],
...

L'entrée sélectionnée est la plus longue (en nombre de composants du nom, pas en nombre de caractères) qui correspond. Dans l'exemple ci-dessus, si on cherche des informations sur foobar.org, on ira voir le serveur RDAP en https://example.org/, si on en cherche sur toto.org, on ira en https://registry.example.com/myrdap/. (En pratique, aujourd'hui, le tableau des serveurs RDAP ne contient que des TLD.)

Pour les numéros d'AS (section 5.3), on se sert d'intervalles de numéros et de la syntaxe du RFC 5396 :

"services": [
         [
           ["2045-2045"],
           [
             "https://rir3.example.com/myrdap/"
           ]
         ],
         [
           ["10000-12000", "300000-400000"],
           [
             "http://example.org/"
           ]
         ],
...

Les entités (section 6 de notre RFC) posent un problème particulier, elles ne se situent pas dans un espace arborescent, contrairement aux autres objets utilisable avec RDAP. (Rappel : les entités sont les contacts, les titulaires, les BE…) Il n'existe donc pas de bootstrap service pour les entités (ni, d'ailleurs, pour les serveurs de noms, cf. section 9). En pratique, si une requête RDAP renvoie une réponse incluant un handle pour une entité, il n'est pas idiot d'envoyer les requêtes d'information sur cette entité au même serveur RDAP mais il n'est pas garanti que cela marche.

Notez (section 7) que le tableau services ne sera pas forcément complet et que certains objets peuvent ne pas s'y trouver. Par exemple, dans un tableau pour les TLD, les registres n'ayant pas encore de serveur RDAP ne seront logiquement pas cités. On peut toujours tenter un autre serveur, en espérant qu'il utilisera les redirections HTTP. Par exemple, ici, on demande au serveur RDAP de l'APNIC pour une adresse RIPE. On est bien redirigé avec un code 301 (RFC 7231, section 6.4.2) :


%  curl -v http://rdap.apnic.net/ip/2001:67c:288::2
...
> GET /ip/2001:67c:288::2 HTTP/1.1
> User-Agent: curl/7.38.0
> Host: rdap.apnic.net
> Accept: */*
> 
< HTTP/1.1 301 Moved Permanently
< Date: Wed, 01 Apr 2015 13:07:00 GMT
< Location: http://rdap.db.ripe.net/ip/2001:67c:288::2
< Content-Type: application/rdap+json
...

La section 8 couvre quelques détails liés au déploiement de ce service. C'est que le Bootstrap Service est différent des autres registres IANA. Ces autres registres ne sont consultés que rarement (par exemple, lors de l'écriture d'un logiciel) et jamais en temps réel. Si le serveur HTTP de l'IANA plante, ce n'est donc pas trop grave. Au contraire, le Bootstrap Service doit marcher en permanence, car un client RDAP en a besoin. Pour limiter la pression sur les serveurs de l'IANA, notre RFC recommande que les clients RDAP ne consultent pas ce service à chaque requête RDAP, mais qu'au contraire ils mémorisent le JSON récupéré, en utilisant le champ Expires: de HTTP (RFC 7234, section 5.3) pour déterminer combien de temps doit durer cette mémorisation. Néanmoins, l'IANA a dû ajuster ses serveurs HTTP et louer les services d'un CDN pour assurer ce rôle relativement nouveau.

Le client RDAP doit d'autre part être conscient que le registre n'est pas mis à jour instantanément. Par exemple, si un nouveau TLD est ajouté par le gouvernement états-unien, via Verisign, TLD dont le registre a un serveur RDAP, cette information ne sera pas disponible immédiatement pour tous les clients RDAP.

Comme son ancêtre whois, RDAP soulève plein de questions de sécurité intéressantes, détaillées plus précisement dans le RFC 7481.

La section 12 de notre RFC détaille les processus IANA à l'œuvre. En effet, et c'est une autre différence avec les registres IANA habituels, il n'y a pas de mise à jour explicite des registres du bootstrap service, ils sont mis à jour implicitement comme effet de bord des allocations et modifications d'allocation dans les registres d'adresses IPv4, adresses IPv6, numéros d'AS et domaines. Il a juste fallu modifier les procédures de gestion de ces registres existants, pour permettre d'indiquer le serveur RDAP. Ainsi, le formulaire de gestion d'un TLD par son responsable a été modifié pour ajouter un champ "serveur RDAP" comme il y avait un champ "serveur Whois".

Aujourd'hui, les fichiers de ce service sont :

  • https://data.iana.org/rdap/dns.json
  • https://data.iana.org/rdap/ipv4.json
  • https://data.iana.org/rdap/ipv6.json
  • https://data.iana.org/rdap/asn.json

Voici, par exemple, celui d'IPv6 (notez le champ Expires: dans la réponse) :


%  curl -v https://data.iana.org/rdap/ipv6.json
...
* Connected to data.iana.org (2606:2800:11f:bb5:f27:227f:1bbf:a0e) port 80 (#0)
> GET /rdap/ipv6.json HTTP/1.1
> Host: data.iana.org
> User-Agent: curl/7.68.0
> Accept: */*
> 
< HTTP/1.1 200 OK
< Expires: Tue, 26 Apr 2022 12:30:52 GMT
< Last-Modified: Wed, 06 Nov 2019 19:00:04 GMT
...
{
  "description": "RDAP bootstrap file for IPv6 address allocations",
  "publication": "2019-11-06T19:00:04Z",
  "services": [
    [
      [
        "2001:4200::/23",
        "2c00::/12"
      ],
      [
        "https://rdap.afrinic.net/rdap/",
        "http://rdap.afrinic.net/rdap/"
...

Et celui des TLD :


% curl -v http://data.iana.org/rdap/dns.json
...
  "description": "RDAP bootstrap file for Domain Name System registrations",
  "publication": "2022-04-22T16:00:01Z",
  "services": [
    [
      [
        "nowruz",
        "pars",
        "shia",
        "tci",
        "xn--mgbt3dhd"
      ],
      [
        "https://api.rdap.agitsys.net/"
      ]
    ],

Testons si cela marche vraiment :

% curl -v https://api.rdap.agitsys.net/domain/www.nowruz
...
 "nameservers": [
    {
      "objectClassName": "nameserver",
      "ldhName": "ns1.aftermarket.pl.",
      "unicodeName": "ns1.aftermarket.pl."
    },
    {
      "objectClassName": "nameserver",
      "ldhName": "ns2.aftermarket.pl.",
      "unicodeName": "ns2.aftermarket.pl."
    }
  ]

Parfait, tout marche.

Il y a très peu de changements depuis le RFC précédent, le RFC 7484, quelques nettoyages seulement, et un changement de statut sur le chemin des normes.

Si vous aimez lire des programmes, j'ai fait deux mises en œuvre de ce RFC, la première en Python est incluse dans le code utilisé pour mon article « Récupérer la date d'expiration d'un domaine en RDAP ». Le code principal est ianardap.py mais vous noterez que, contrairement à ce que demande le RFC dans sa section 8, la mémorisation du bootstreap registry n'utilise pas le champ HTTP Expires:. La deuxième, en Elixir, est plus correcte et est disponible dans find-rdap-elixir.tar. Lorsque la constante @verbose est vraie, le programme affiche les étapes. S'il n'a pas mémorisé de données :

% mix run find_rdap.exs quimper.bzh
Starting
No expiration known
Retrieving from https://data.iana.org/rdap/dns.json
Updating the cache
RDAP bootstrap file for Domain Name System registrations published on 2022-04-22T16:00:01Z
RDAP server for quimper.bzh is https://rdap.nic.bzh/
Retrieving RDAP info at https://rdap.nic.bzh/domain/quimper.bzh
{"rdapConformance":["rdap_level_0","...
  

S'il en a mémorisé :

% mix run find_rdap.exs quimper.bzh
Starting
Expiration is 2022-04-26 12:44:48Z
Using the cache ./iana-rdap-bootstrap.json
RDAP bootstrap file for Domain Name System registrations published on 2022-04-22T16:00:01Z
RDAP server for quimper.bzh is https://rdap.nic.bzh/
Retrieving RDAP info at https://rdap.nic.bzh/domain/quimper.bzh
{"rdapConformance":["rdap_level_0", ...

Mais il existe évidemment une mise en œuvre de ce RFC dans tous les clients RDAP comme :

  • L'application de Viagenie,
  • Celle de l'ICANN (application Web),
  • L'ARIN a un service de redirection, https://rdap-bootstrap.arin.net/bootstrap, qui lit la base IANA et envoie les redirections appropriées, quand un client RDAP l'interroge.

Téléchargez le RFC 9224


L'article seul

RFC 9221: An Unreliable Datagram Extension to QUIC

Date de publication du RFC : Mars 2022
Auteur(s) du RFC : T. Pauly, E. Kinnear (Apple), D. Schinazi (Google)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF quic
Première rédaction de cet article le 1 avril 2022


Le protocole QUIC fournit, comme son concurrent TCP, un canal fiable d'envoi de données. Mais certaines applications n'ont pas impérativement besoin de cette fiabilité et se contenteraient très bien d'un service de type datagramme. Ce nouveau RFC ajoute donc un nouveau type de trame QUIC, DATAGRAM, pour fournir un tel service.

Dit comme cela, évidemment, ça semble drôle, de bâtir un service non fiable au-dessus du service fiable que rend QUIC. Mais cela permet plusieurs choses très intéressantes, notamment si deux machines qui communiquent ont besoin des deux types de service : elles pourront utiliser une seule session QUIC pour les deux.

Un petit rappel (mais relisez le RFC 9000 pour les détails) : dans une connexion QUIC sont envoyés des paquets et chaque paquet QUIC contient une ou plusieurs trames. Chaque trame a un type et ce type indique si la trame sera retransmise ou non en cas de perte. Le service habituel (utilisé par exemple par HTTP/3) se sert de trames de type STREAM, qui fournissent un service fiable (les données perdues sont retransmises par QUIC). Mais toutes les applications ne veulent pas d'une telle fiabilité ou, plus précisement, ne sont pas prêtes à en payer le coût en termes de performance. Ces applications sont celles qui préféraient utiliser UDP (RFC 768) plutôt que TCP. Pour rajouter de la sécurité, elles utilisaient DTLS (RFC 6347). Si QUIC remplace TCP, comment remplacer UDP+DTLS ?

D'ailleurs, faut-il le remplacer ? La section 2 du RFC donne les raisons suivantes :

  • Les applications qui ont besoin à la fois d'un canal fiable et d'un canal qui ne l'est pas (par exemple une application de communication qui veut un canal fiable pour la signalisation et un pas forcément fiable pour les données multimédia) peuvent avec QUIC n'avoir qu'une seule session (et donc ne « payer » l'établissement de la session qu'une fois, ce qui diminuera la latence),
  • QUIC a un meilleur mécanisme de récupération des pertes que DTLS, lors de l'établissement de la connexion,
  • contrairement à UDP+DTLS, QUIC a un mécanisme de contrôle de la congestion, ce qui simplifie la tâche de l'application (cf. RFC 8085).

Ces raisons sont particulièrement importantes pour le streaming audio/vidéo, pour les jeux en ligne, etc. Les datagrammes dans QUIC peuvent aussi être utiles pour un service de VPN. Là aussi, le VPN a besoin à la fois d'un canal fiable pour la configuration de la communication, mais peut se satisfaire d'un service de type datagramme ensuite (puisque les machines connectées via le VPN auront leur propre mécanisme de récupération des données perdues). Permettre la création de VPN au-dessus de QUIC est le projet du groupe de travail MASQUE.

Bien, normalement, maintenant, vous êtes convaincu·es de l'intérêt des datagrammes au-dessus de QUIC. Pour en envoyer, il faut toutefois que les deux parties qui communiquent soient d'accord. C'est le rôle du paramètre de transport QUIC max_datagram_frame_size, à utiliser lors de l'établissement de la session. (Ce paramètre est enregistré à l'IANA.) S'il est absent, on ne peut pas envoyer de datagrammes (et le partenaire coupe la connexion si on le fait quand même). S'il est présent, il indique la taille maximale acceptée, typiquement 65 535 octets. Sa valeur peut être stockée dans la mémoire d'une machine, de façon à permettre son utilisation lors du 0-RTT (commencer une session QUIC directement sans perdre du temps en négociations). Un paquet QUIC 0-RTT peut donc inclure des trames de type DATAGRAM.

Ah, justement, ce type DATAGRAM. Désormais enregistré à l'IANA parmi les types de trames QUIC, il sert à indiquer des trames qui seront traitées comme des datagrammes, et qui ont la forme suivant :

DATAGRAM Frame {
     Type (i) = 0x30..0x31,
     [Length (i)],
     Datagram Data (..),
}
  

Le champ de longueur est optionnel, sa présence est indiquée par le dernier bit du type (0x30, pas de champ Longueur, 0x31, il y en a un). S'il est absent, la trame va jusqu'au bout du paquet QUIC (rappelons qu'un paquet QUIC peut contenir plusieurs trames).

Maintenant qu'on a des datagrammes comme QUIC, comment les utilise-t-on (section 5 du RFC) ? Rien d'extraordinaire, l'application envoie une trame DATAGRAM et l'application à l'autre bout la recevra. Si la trame n'est pas arrivée, l'émetteur ne le saura pas. La trame peut se retrouver avec d'autres trames (du même type ou pas) dans un même paquet QUIC (et plusieurs paquets QUIC peuvent se retrouver dans un même datagramme IP). La notion de ruisseau (stream) n'existe pas pour les trames-datagrammes, si on veut pouvoir les démultiplexer, c'est à l'application de se débrouiller. (Une version préliminaire de cette extension à QUIC prévoyait un mécanisme de démultiplexage, finalement abandonné.) Comme toutes les trames QUIC, les trames DATAGRAM sont protégées par la cryptographie. Le service est donc équivalent à celui d'UDP+DTLS, pas UDP seul.

Un service de datagrammes est non fiable, des données peuvent se perdre. Mais si les trames de type DATAGRAM ne sont pas réémises (pas par QUIC, en tout cas), elles entrainent néanmoins l'émission d'accusés de réception (RFC 9002, sections 2 et 3). Une bibliothèque QUIC peut ainsi (mais ce n'est pas obligatoire) notifier l'application des pertes. De la même façon, elle a la possibilité de dire à l'application quelles données ont été reçues par le QUIC à l'autre bout (ce qui ne garantit pas que l'application à l'autre bout les aient bien reçues, si on a besoin d'informations sûres, il faut le faire au niveau applicatif).

Comme l'émetteur n'estime pas crucial que toutes les données arrivent, une optimisation possible pour QUIC est que l'accusé de réception d'un paquet ne contenant que des trames DATAGRAM ne soit pas émis tout de suite, il peut attendre le paquet suivant.

Cette extension existe déjà dans plusieurs mises en œuvre de QUIC, mais je ne l'ai pas testée.


Téléchargez le RFC 9221


L'article seul

RFC 9210: DNS Transport over TCP - Operational Requirements

Date de publication du RFC : Mars 2022
Auteur(s) du RFC : J. Kristoff (Dataplane.org), D. Wessels (Verisign)
Réalisé dans le cadre du groupe de travail IETF dnsop
Première rédaction de cet article le 15 avril 2022


Ce nouveau RFC décrit les exigences opérationnelles pour le DNS, plus précisement pour son protocole de transport TCP. Le RFC 7766 décrivait la norme technique, et s'imposait donc aux programmeur·ses, ce RFC 9210 est plus opérationnel et concerne donc ceux et celles qui installent et configurent les serveurs DNS et les réseaux qui y mènent.

Les messages DNS sont historiquement surtout transportés sur UDP. Mais le DNS a toujours permis TCP et, de nos jours, il est fréquemment utilisé notamment en conjonction avec TLS (cf. RFC 7858). Il est d'autant plus important que TCP marche bien qu'il est parfois nécessaire pour certains usages, par exemple pour des enregistrements de grande taille (ce qui arrive souvent avec DNSSEC). Une mise en œuvre du DNS doit donc inclure TCP, comme clarifié par le RFC 7766 (les RFC précédents n'étaient pas sans ambiguité). Mais cela ne signifiait pas forcément que les serveurs DNS avaient activé TCP ou que celui-ci marchait bien (par exemple, une stupide middlebox pouvait avoir bloqué TCP). Ce nouveau RFC 9210 ajoute donc que l'obligation d'avoir TCP s'applique aussi aux serveurs effectifs, pas juste au logiciel.

DNS sur TCP a une histoire compliquée (section 2 du RFC). Franchement, le fait que le DNS marche sur TCP aussi bien que sur UDP n'a pas toujours été clairement formulé, même dans les RFC. Et, en dehors de l'IETF, beaucoup de gens ont raconté n'importe quoi dans des articles et des documentations, par exemple que TCP n'était utile qu'aux transferts de zone, ceux normalisés dans le RFC 5936. Cette légende a été propagée par certains auteurs (comme Cheswick et Bellovin dans leur livre Firewalls and Internet Security: Repelling the Wily Hacker) ou par des gens qui ne mesuraient pas les limites de leurs compétences DNS comme Dan Bernstein. Pourtant, TCP a toujours été nécessaire, par exemple pour transporter des données des grande taille (que DNSSEC a rendu bien plus fréquentes). Le RFC 1123, en 1989, insistait déjà sur ce rôle. Certes, EDNS (RFC 6891) permettait déjà des données de taille supérieure aux 512 octets de la norme originelle. Mais il ne dispense pas de TCP. Par exemple, des données de taille supérieure à 1 460 octets (le maximum qui peut tenir avec le MTU typique) seront fragmentées et les fragments, hélas, ne passent pas partout sur l'Internet. (Cf. le « DNS Flag Day » de 2020 et lire « DNS XL » et « Dealing with IPv6 fragmentation in the DNS ».) Et la fragmentation pose également des problèmes de sécurité, voir par exemple « Fragmentation Considered Poisonous ».

Bon, en pratique, la part de TCP reste faible mais elle augmente. Mais, trop souvent, le serveur ne répond pas en TCP (ou bien ce protocole est bloqué par le réseau), ce qui entraine des tas de problèmes, voir par exemple le récit dans « DNS Anomalies and Their Impacts on DNS Cache Servers ».

Notons enfin que TCP a toujours permis que plusieurs requêtes se succèdent sur une seule connexion TCP, même si les premières normes n'étaient pas aussi claires qu'il aurait fallu. L'ordre des réponses n'est pas forcément préservé (cf. RFC 5966), ce qui évite aux requêtes rapides d'attendre le résultat des lentes. Et un client peut envoyer plusieurs requêtes sans attendre les réponses (RFC 7766). Par contre, la perte d'un paquet va entrainer un ralentissement de toute la connexion, et donc des autres requêtes (QUIC résout ce problème et il y a un projet de DNS sur QUIC).

Vous pouvez tester qu'un serveur DNS accepte de faire passer plusieurs requêtes sur une même connexion TCP avec dig et son option +keepopen (qui n'est pas activée par défaut). Ici, on demande à ns4.bortzmeyer.org les adresses IP de www.bortzmeyer.org et mail.bortzmeyer.org :

% dig +keepopen +tcp @ns4.bortzmeyer.org www.bortzmeyer.org AAAA mail.bortzmeyer.org AAAA
  

Vous pouvez vérifier avec tcpdump qu'il n'y a bien eu qu'une seule connexion TCP, ce qui ne serait pas le cas sans +keepopen.

Les exigences opérationnelles pour le DNS sur TCP figurent dans la section 3 du RFC. Il est désormais obligatoire non seulement d'avoir la possibilité de TCP dans le code mais en outre que cela soit activé partout. (En termes du RFC 2119, on est passé de SHOULD à MUST.)

La section 4 discute de certaines considérations opérationnelles que cela pourrait poser. D'abord, certains serveurs ne sont pas joignables en TCP. C'était déjà mal avant notre RFC mais c'est encore pire maintenant. Mais cela arrive (ce n'est pas forcément la faute du serveur, cela peut être dû à une middlebox boguée sur le trajet). Les clients doivent donc être préparés à ce que TCP échoue (de toute façon, sur l'Internet, tout peut toujours échouer). D'autre part, diverses attaques par déni de service sont possibles, aussi bien contre le serveur (SYN flooding, contre lequel la meilleure protection est l'utilisation de cookies, cf. RFC 4987), que contre des machines tierces, le serveur étant utilisé comme réflecteur.

Aussi bien le client DNS que le serveur n'ont pas des ressources illimitées et doivent donc gérer les connexions TCP. Dit plus brutalement, il faut être prêt à couper les connexions qui semblent inutilisées. Bien sûr, il faut aussi laisser les connexions ouvertes suffisamment longtemps pour amortir leur création sur le plus grand nombre de requêtes possibles, mais il y a des limites à tout. (Le RFC suggère une durée maximale dans les dizaines de secondes, pouvant être abaissée à quelques secondes pour les serveurs très chargés.)

TCP est particulièrement intéressant pour le DNS quand TLS est inséré (RFC 7858). Mais il va alors consommer davantage de temps de CPU et, dans certains cas, l'établissement de connexion sera plus lent.

Le RFC donne quelques conseils quantitatifs (à ne pas appliquer aveuglément, bien sûr). Un maximum de 150 connexions TCP simultanées semble raisonnable pour un serveur ordinaire, avec un maximum de 25 par adresse IP source. Un délai de garde après inactivité de 10 secondes est suggéré. Par contre, le RFC ne propose pas de valeur maximale au nombre de requêtes par connexion TCP, ni de durée maximale à une connexion.

Les fanas des questions de sécurité noteront que les systèmes de journalisation et de surveillance peuvent ne pas être adaptés à TCP. Par exemple, un méchant pourrait mettre la requête DNS dans plusieurs segments TCP et donc plusieurs paquets IP. Un système de surveillance qui considérerait qu'une requête = un paquet serait alors aveugle. Notez qu'un logiciel comme dnscap a pensé à cela, et réassemble les paquets. Mais il est sans doute préférable, de nos jours, de se brancher sur le serveur, par exemple avec dnstap, notamment pour éviter de faire le réassemblage deux fois. (Ceux qui lisent mes articles depuis longtemps savent que je donnais autrefois le conseil inverse. Mais le déploiement de plus en plus important de TCP et surtout de TLS impose de changer de tactique.)


Téléchargez le RFC 9210


L'article seul

RFC 9199: Considerations for Large Authoritative DNS Servers Operators

Date de publication du RFC : Mars 2022
Auteur(s) du RFC : G.C.M. Moura (SIDN Labs/TU Delft), W. Hardaker, J. Heidemann (USC/Information Sciences Institute), M. Davids (SIDN Labs)
Pour information
Première rédaction de cet article le 22 mars 2022


On sait que le DNS est un des services d'infrastructure les plus essentiels de l'Internet. Il est, par exemple, crucial que les serveurs DNS faisant autorité soient correctement gérés, et robustes face aux problèmes qui peuvent survenir. Ce RFC donne un certain nombre de conseils (juste des conseils, il ne s'agit pas d'une norme) aux opérateurs de ces serveurs.

Il n'est pas obligatoire de suivre ces conseils mais il faut noter qu'ils sont tous fondés sur des articles publiés dans des revues techniques avec examen par les pairs. Donc, c'est quand même sérieux, même si ce RFC n'a pas le statut de norme. Le RFC vise surtout les « gros » serveurs faisant autorité, par exemple les serveurs de TLD importants. Ces serveurs sont typiquement anycastés (RFC 1546 et RFC 4786). Si le vôtre est unicast et ne sert qu'à trois visiteurs de temps en temps, vous n'êtes pas forcément concerné·e.

Au passage, cette distinction entre serveurs faisant autorité et résolveurs est cruciale dès qu'on parle du DNS. La section 2 du RFC commence d'ailleurs par un rappel de cette distinction. D'autre part, cette même section insiste sur l'importance du DNS pour le vécu de l'utilisatrice. Par exemple la latence perçue par celle-ci dépend en bonne partie du DNS. Voici un exemple :

% curl-timing https://www.nic.af/
DNS: 0,920891 s
TCP connect: 1,124164 s
TLS connect: 1,455578 s
Start transfer: 1,598288 s
Total: 1,735741 s
  

On voit que la résolution DNS a pris plus de la moitié du temps total. (La commande curl-timing est définie par alias curl-timing='curl --silent --output /dev/null --write-out "DNS: %{time_namelookup} s\nTCP connect: %{time_connect} s\nTLS connect: %{time_appconnect} s\nStart transfer: %{time_starttransfer} s\nTotal: %{time_total} s\n"'.) Sur ce sujet de la latence, voir aussi l'article « The Internet at the Speed of Light ». La latence dépend en grande partie de la distance géographique, et la réduire impose donc une présence mondiale.

Et ces performances, et cette robustesse sont menacées, entre autres, par les nombreuses attaques par déni de service qui visent le DNS, comme celle décrite dans l'article « Anycast vs. DDoS: Evaluating the November 2015 Root DNS Event ».

La section 3 est le cœur du RFC, contenant les recommandations, numérotées de C1 à C6. Commençons par C1, le conseil de n'avoir que des serveurs anycast. L'anycast est indispensable pour répartir très largement les serveurs, assurant la performance et la robustesse de la résolution DNS. Bien sûr, on peut se contenter d'avoir plusieurs enregistrements NS mais cela ne suffit pas : diverses raisons font qu'on ne peut pas avoir des centaines d'enregistrements dans un ensemble NS, alors que certains nuages anycast atteignent cette taille. Donc, avoir plusieurs enregistrements NS est nécessaire mais cela ne dispense pas de l'anycast.

C'est d'autant plus vrai que, parmi les enregistrements NS, la sélection de celui utilisé est faite par le résolveur. Les résolveurs corrects mesurent la latence et choisissent le serveur faisant autorité le plus rapide. Mais il y a d'autres résolveurs qui n'utilisent pas de bons algorithmes de sélection (cf. « Recursives in the Wild: Engineering Authoritative DNS Servers »). Avec l'anycast, la sélection de l'instance utilisée est faite par le réseau, via BGP, et peut donc être meilleure. Du fait de ces résolveurs sous-performants, un opérateur a donc intérêt à ce que tous les serveurs faisant autorité soient anycastés. S'il y a un « maillon faible », unicast et mal connecté, il sera quand même consulté par certains résolveurs, et dégradera donc la latence dans certains cas. Par exemple, le TLD .nl est passé en tout anycast en 2018.

Maintenant, C2, le conseil de travailler son routage. Une fois qu'on a décidé de mettre de l'anycast partout, il reste à optimiser. BGP ne garantit pas du tout, contrairement à ce qu'on lit parfois, que la route la plus rapide sera choisie. BGP fait ce que les administrateurs réseau lui demandent de faire. On voit régulièrement des traceroute qui montrent qu'on ne va pas à l'instance anycast la plus proche. Certains opérateurs DNS compensent en ajoutant davantage d'instances mais l'article « Anycast Latency: How Many Sites Are Enough? » montre, en testant des serveurs de la racine depuis des sondes RIPE Atlas, que le nombre d'instances compte moins que le soin apporté au routage. (On ne parle ici que de performances ; pour la résistance aux attaques par déni de service, le nombre d'instances reste essentiel.) Ici, le temps de réponse des serveurs faisant autorité pour .fr, depuis une machine en France (il y a une instance proche pour chaque serveur) :

% check-soa -i fr            
d.nic.fr.
	2001:678:c::1: OK: 2230506452 (4 ms)
	194.0.9.1: OK: 2230506452 (0 ms)
e.ext.nic.fr.
	193.176.144.22: OK: 2230506434 (15 ms)
	2a00:d78:0:102:193:176:144:22: OK: 2230506434 (15 ms)
f.ext.nic.fr.
	194.146.106.46: OK: 2230506434 (6 ms)
	2001:67c:1010:11::53: OK: 2230506452 (11 ms)
g.ext.nic.fr.
	2001:678:4c::1: OK: 2230506434 (2 ms)
	194.0.36.1: OK: 2230506434 (2 ms)    
  

Le conseil C3 porte sur un concept très important lorsqu'on fait de l'anycast, celui de bassin d'attraction. Ce terme désigne l'ensemble des réseaux qui vont envoyer leurs paquets vers une instance donnée. Si toutes les instances ont à peu près les mêmes capacités de traitement des requêtes, on souhaite en général placer les instances et configurer BGP de manière à ce que toutes les instances reçoivent à peu près la même quantité de requêtes. Mais en pratique c'est rarement le cas : le réseau est une chose compliquée. Il existe des méthodes pour améliorer les choses (cf. l'article « Broad and Load-Aware Anycast Mapping with Verfploeter », qui décrit l'outil Verfploeter) mais ce n'est jamais parfait. Au moins, un outil comme Verfploeter permet de procéder plus scientifiquement qu'au pifomètre, et d'avoir une idée de ce que produiront des changements de configuration BGP pour faire du traffic engineering (par exemple, allonger le chemin d'AS dans les annonces, pour diminuer le trafic d'une instance).

Le conseil C4, quant à lui, porte sur les attaques par déni de service (comme celle décrite dans « Anycast vs. DDoS: Evaluating the November 2015 Root DNS Event ») et sur le comportement des serveurs soumis à un stress intense. Que peut faire l'opérateur lorsque Mirai ou un de ses semblables attaque ?

  • Essayer de diminuer le trafic entrant, soit en faisant du traffic engineering BGP pour envoyer le trafic vers une autre instance, si certaines ont davantage de capacité, ou bien ne sont pas attaquées, voire, si on n'a pas de réserves, en arrêtant complètement d'annoncer les routes (ce qui arrête le service - ce qui était le but de l'attaquant - mais cela peut être nécessaire s'il y a d'autres services au même endroit et qu'on veut les épargner),
  • Ou bien encaisser en silence, sachant qu'on perdra des requêtes et qu'on ne pourra pas répondre à tout. Si l'attaque ne frappait que certaines instances, cela peut permettre d'épargner les instances non attaquées.

Le conseil C4 est donc d'avoir des plans prêts à l'avance, permettant de prendre une décision en cas de crise, et de l'appliquer.

Et les TTL ? Ils ne sont pas oubliés. La mémorisation des réponses, pendant une durée maximale égale au TTL, est un point essentiel du DNS, et un facteur de performance crucial. Même si un serveur faisant autorité répond souvent en moins de 50 ms, la réponse de la mémoire d'un résolveur, qui peut arriver en 1 ms, sera encore préférable. Ce rôle a été largement étudié (voir par exemple « Modeling TTL- based Internet Caches » ou, plus récemment, « When the Dike Breaks: Dissecting DNS Defenses During DDoS »). Une étude des conséquences du choix du TTL sur les performances est la base du conseil C5, l'étude « Cache Me If You Can: Effects of DNS Time-to- Live ». Elle montre que :

  • Des TTL plus longs diminuent le temps de réponse (puisque les données sont conservées plus longtemps dans la mémoire des résolveurs), cf. par exemple l'expérience faite sur .uy citée dans l'article ci-dessus,
  • Ces TTL plus longs diminuent le trafic DNS, pour la même raison, (logiquement, les gens qui s'inquiètent de l'empreinte environnementale du numérique devraient mettre des TTL longs sur leurs domaines),
  • Et ils améliorent la robustesse face aux attaques par déni de service (même si tous les serveurs faisant autorité ont du mal à répondre, les résolveurs pourront continuer à servir les données),
  • D'un autre côté, et comme il n'existe pas de solution parfaite, juste des choix et des compromis, des TTL plus longs empêchent de changer rapidement sa configuration ; si le changement était planifié, ce n'est pas grave (on abaisse le TTL avant le changement et on le remonte après), mais si on veut le faire en urgence, c'est plus gênant,
  • C'est d'autant plus gênant que certains services d'atténuation des attaques par déni de service fonctionnent en utilisant le DNS pour envoyer le trafic vers l'atténuateur ; des TTL longs limitent cette possibilité (et la planification ne change rien dans ce cas, puisque les attaquants ne se signalent pas forcément à l'avance),
  • Même problème avec la répartition de charge utilisant le DNS.

Bref, on ne peut pas faire une recommandation quantitative appliquable à tous les cas. Le conseil C5 est donc plus complexe :

  • Pour un domaine ordinaire, des TTL d'au moins une heure, et de préférence d'au moins huit heures sont recommandés,
  • Pour les gros registres (par exemple registres de TLD), la plupart des résolveurs utiliseront de toute façon les TTL indiqués dans la zone fille ; pour le bien des autres résolveurs, le RFC recommande un TTL d'au moins une heure,
  • Pour les zones « terminales » qui utilisent des répartiteurs de charge ou des services d'atténuation d'attaques qui reposent sur le DNS, on peut se contenter de TTL de 5 minutes, mais le RFC recommande quand même au moins 15 minutes.

Et si les TTL entre la zone parente et la zone fille diffèrent ? La question se pose typiquement pour les enregistrements NS. Par exemple, les enregistrements NS dans la zone racine ont un TTL de 48 heures, alors que dans les zones des TLD, l'ensemble NS a presque toujours un TTL plus faible (une heure pour .cl, par exemple). Selon que le résolveur est parent-centric (une minorité) ou child-centric (la grande majorité), il utilisera le TTL de la zone parente ou bien celui de la zone fille. Le conseil C6 : on ne peut pas compter que le TTL qu'on a mis soit respecté partout, si l'enregistrement existe aussi dans la zone parente avec des TTL différents. Attention donc lorsqu'on veut changer quelque chose, à intégrer le TTL de la zone parente.


Téléchargez le RFC 9199


L'article seul

RFC 9184: BGP Extended Community Registries Update

Date de publication du RFC : Janvier 2022
Auteur(s) du RFC : C. Loibl (next layer Telekom)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF idr
Première rédaction de cet article le 21 janvier 2022


Les « communautés étendues » de BGP, des attributs d'une annonce de route avec BGP, sont enregistrées dans des registres IANA, décrits par le RFC 7153. Notre nouveau RFC 9184 met légèrement à jour les procédures d'enregistrement dans ces registres.

Le principal changement est simple : les types 0x80, 0x81 et 0x82 du registre des communautés étendues transitives sont désormais utilisables selon une politique d'enregistrement « premier arrivé, premier servi » (cf. RFC 8126 sur ces politiques d'enregistrement à l'IANA). Ils sont en effet utilisés par le RFC 8955 alors qu'ils étaient dans une plage prévue pour les expérimentations. L'erreur est donc désormais rectifiée.


Téléchargez le RFC 9184


L'article seul

RFC 9172: Bundle Protocol Security (BPSec)

Date de publication du RFC : Janvier 2022
Auteur(s) du RFC : E. Birrane, K. McKeever (JHU/APL)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF dtn
Première rédaction de cet article le 1 février 2022


Le protocole Bundle, normalisé dans le RFC 9171, permet la communication entre des machines dont la connectivité est faible et/ou intermittente, par exemple dans le domaine spatial. L'absence de synchronicité interdit beaucoup de solutions de sécurité couramment utilisées sur l'Internet. Ce nouveau RFC présente donc un mécanisme spécifique pour assurer la sécurité (confidentialité et intégrité) des communications faites avec Bundle : ce mécanisme se nomme BPsec (Bundle Protocol security). Notez que le mécanisme est très général, et laisse de côté de nombreux détails.

BPsec peut assurer une sécurité de bout en bout. Ce n'est pas évident dans le contexte d'utilisation de Bundle (RFC 4838), les DTN (Delay Tolerant Networks). Bundle est un protocole qui fonctionne en « enregistre et fais suivre » (store and forward), sans liaisons directes entre émetteur et récepteur, et avec des réseaux lents, imprévisibles, à fort taux de perte de paquets. On ne peut donc pas garantir, par exemple, qu'émetteur et récepteur pourront communiquer à la demande avec un tiers de confiance, genre autorité de certification. On ne peut même pas supposer que toutes les liaisons seront bidirectionnelles, ce qui veut dire, entre autres, qu'un échange de clés Diffie-Hellman ne sera pas possible. Le protocole suppose évidemment que ledit réseau n'est pas de confiance : des méchants peuvent regarder et modifier les bits qui circulent. Cette supposition est classique en sécurité.

BPsec ne va pas essayer de garantir une authentification de chaque étape intermédiaire. D'abord, on ne sait pas si le nœud suivant est réellement adjacent dans l'espace physique (il peut y avoir des intermédiaires « invisibles ») et puis les différents nœuds par lequel le message va passer peuvent avoir des choix de sécurité incompatibles, les réseaux DTN pouvant, comme l'Internet, être composés de nœuds gérés par des organisations différentes.

Si les logiciels sont tous bien programmés, et que les clés privées utilisées n'ont pas été compromises, BPsec va garantir l'intégrité et la confidentialité des messages. BPsec est la continuation du cadre défini dans le RFC 6257, en le simplifiant et en le rendant plus réaliste.

Un peu de terminologie pour suivre ce RFC : d'abord, un rappel qu'un bundle est composé de blocs (RFC 9171, section 4.3). Ensuite :

  • Bloc de sécurité (security block) : un bloc d'extension dans un bundle, une unité de données.
  • Security acceptor : un nœud qui traite un bloc de sécurité, et le supprime ensuite. Ce n'est pas forcément le destinataire final (sauf évidemment pour les services de sécurité de bout en bout).
  • Service de sécurité (security service) : un service particulier, par exemple la confidentialité.
  • Source de sécurité (security source) : un nœud qui ajoute un bloc de sécurité. Ce n'est pas forcément l'émetteur initial.
  • Vérificateur de sécurité (security verifier) : un nœud qui lit et vérifie un bloc de sécurité mais qui ne le supprime pas.

La section 2 du RFC résume les points importants de la conception de BPsec :

  • Sécurité au niveau du bloc, pas du bundle entier.
  • Plusieurs sources ont pu mettre des blocs de sécurité dans le bundle.
  • Les différents nœuds ont des politiques de sécurité différentes.
  • BPsec a une notion de contexte de sécurité (qui définit les techniques admissibles, par exemple les algorithmes de cryptographie), notion détaillée dans la section 9.
  • Traitement déterministe des différents blocs de sécurité, notamment de l'ordre de traitement.

Il existe deux sortes de blocs de sécurité (les types de bloc figurent dans un registre IANA, défini dans le RFC 6255), les BIB (Block Integrity Block) et les BCB (Block Confidentiality Block). Les sources de sécurité ajoutent ces blocs et les acceptors les traitent. Dans le cas d'un chiffrement de bout en bout, par exemple, l'émetteur met un BCB que le destinataire déchiffrera. Dans un autre cas, on peut voir un nœud de départ ne mettre aucun bloc de sécurité (peut-être parce que ce nœud est un objet contraint, avec trop peu de ressources de calcul) mais un nœud intermédiaire ajouter un BIB pour protéger le contenu avant un voyage sur un lien qu'on sait dangereux. Ces blocs sont encodés comme spécifié dans le RFC 9171. L'ajout d'un BIB ne modifie pas le contenu du bundle mais celui d'un BCB va le faire, puisque les données seront chiffrées.

Le bloc contient notamment l'identificateur du nœud qui l'a ajouté.

Le bloc doit être mis sous forme canonique de CBOR (RFC 8949, section 4.2). Comme toujours en cryptographie, pour que les signatures soient vérififiables, il faut que les données soient sous une forme canonique.

La section 5 du RFC décrit le traitement des blocs de sécurité. Le nœud peut les passer tels quels, sans les interpréter, s'il n'est qu'un intermédiaire. Ou bien, s'il veut les valider, il va alors vérifier leurs signatures, déchiffrer, etc. En cas d'erreur, notre RFC ajoute cinq codes supplémentaires pour les signaler.

Pas de cryptographie sans clés et la gestion des clés est souvent le point difficile. La section 6 rappelle le problème. Comme les réseaux de type DTN seront très variés, avec des caractéristiques bien différentes, notre RFC ne décrit pas une méthode unique de gestion de clés. Disons que cette gestion est repoussée aux mises en œuvre ultérieures.

Enfin, la section 7 du RFC décrit les différentes politiques possibles, et la section 8 analyse en détail les caractéristiques de sécurité de ce système, face aux différentes menaces. Parmi les points amusants, le RFC note qu'avec les DTN, on peut s'attendre à ce que des bundles restent dans le réseau très longtemps, peut-être même des années (!) et que la cryptographie (choix des algorithmes, par exemple) doit donc être pensée pour durer.

Ce mécanisme de sécurité est mis en œuvre dans le logiciel libre ION.


Téléchargez le RFC 9172


L'article seul

RFC 9171: Bundle Protocol Version 7

Date de publication du RFC : Janvier 2022
Auteur(s) du RFC : S. Burleigh (JPL, Calif. Inst. Of Technology), K. Fall (Roland Computing Services), E. Birrane (APL, Johns Hopkins University)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF dtn
Première rédaction de cet article le 1 février 2022


Après plusieurs itérations, le protocole Bundle, qui sert à transmettre des messages dans des situations où la connectivité est intermittente et la latence importante (par exemple dans l'espace), a atteint sa version 7, la première qui soit officiellement norme de l'Internet. Ce nouveau RFC décrit cette version 7, assez modifiée par rapport à la version 6 qui faisait l'objet du RFC 5050. Les deux versions n'interopèrent pas.

« Dans l'espace, personne ne vous entend crier », disait l'annonce du film Alien. Peut-être, mais on veut quand même communiquer, échanger des messages et des fichiers. Les particularités de cet environnement (et de quelques autres analogues comme par exemple des étendues peu connectées sur Terre ou bien des situations post-catastrophe) ont suscité la création du groupe DTN (Delay-Tolerant Networking), qui travaille à normaliser des techniques pour envoyer une photo de chat à un autre vaisseau spatial. La version 6 du protocole Bundle, spécifié dans le RFC 5050, avait été programmée dans de nombreux langages, et l'expérience acquise avec Bundle v6 a mené cette version 7. Dans les environnements concernés, avec leur latence élevée (et parfois très variable), leur taux de pertes de paquets souvent important, et leur connectivité intermittente, les protocoles de transport comme TCP et les protocoles applicatifs qui les accompagnent ne conviennent pas. Il n'est pas possible de faire du synchrone (on ne peut pas rester à attendre l'autre pendant on ne sait pas combien de temps). D'où la nécessité de protocoles spécifiques, architecturés autour de l'idée de « enregistre et fais suivre » (store and forward), où chaque machine intermédiaire va stocker les messages en attendant une occasion de les livrer. (Oui, ça ressemble à UUCP et c'est logique, les cahiers des charges étant analogues.) Notre RFC résume ce qu'on attend d'un tel protocole :

  • Capacité à utiliser des déplacements physiques des données (en gros, la clé USB dans un camion, mécanisme dont on sait qu'il a une latence désastreuse mais une énorme capacité ; cf. l'anecdote amusante de l'Allemand et son cheval, ou bien l'offre SnowMobile d'Amazon).
  • Capacité d'un envoyeur à oublier, une fois qu'il a transmis le message au nœud suivant (alors que TCP doit garder les données, en attendant l'accusé de réception de la destination finale).
  • Capacité à gérer les connectivités intermittentes, voire les cas où émetteur et récepteur ne sont jamais joignables en même temps.
  • Capacité à utiliser les cas où la connectivité arrive à un moment prédit à l'avance, aussi bien que ceux où il faut être opportuniste, utilisant la connectivité quand elle arrive.

Des détails sur ce cahier des charges sont dans les RFC 4838 et dans l'article de K. Fall à SIGCOMM « A delay-tolerant network architecture for challenged internets ».

La section 3 du RFC rappelle les termes utilisés, notamment :

  • Bundle (j'ai été trop paresseux pour traduire ce terme mais Bertand Petit suggère « ballot ») : une unité de données transmises. Un message (tel que compris par l'utilisateur humain) va être découpé en bundles qui seront transmis sur le réseau.
  • BPA (Bundle Protocol Agent) : le logiciel qui, sur un nœud, met en œuvre le protocole décrit dans ce RFC.
  • CLA (Convergence Layer Adapter) : la partie du protocole qui parle aux couches basses, pour effectuer l'envoi et la réception. Cela peut, par exemple, être TCP (RFC 9174).
  • Nœud (node) : une machine qui peut envoyer et recevoir des bundles mais aussi relayer les bundles des autres. Chaque nœud a un identificateur, le node ID, qui est un URI (RFC 3986), en général de plan dtn (comme dtn://example.com/foobar) ou, de plus bas niveau et de signification seulement locale, ipn, qui avait été créé par le RFC 6260 (comme ipn:9.37). Les plans utilisés ont été mis dans le registre IANA.
  • Transmission (Forwarding) : faire suivre le message au nœud suivant (tout ce protocole est « saut par saut », avec des nœuds qui se refilent les bundles).
  • Terminal (endpoint) : un ou plusieurs nœuds qui mettent en œuvre un service. Une sorte de nœud virtuel, quoi. Comme les nœuds, ils ont un identificateur qui est un URI.

La section 4 du RFC décrit le format des bundles. Ce sera du CBOR (RFC 8949). Un bundle comprend un certain nombre de booléens qui indiquent si le récepteur doit accuser réception de l'arrivée du bundle, de la transmission au nœud suivant, etc. (Leur liste figure dans un registre IANA.) Il indique également la destination (sous le forme d'un endpoint ID) et la source (facultative).

Un bundle est en fait composé de blocs, chaque bloc étant un tableau CBOR. Le premier bloc porte les métadonnées indispensables pour les nœuds qui relaieront le bundle (comme l'identificateur de destination) ou comme la durée de vie du bundle (analogue au TTL d'IP). Chaque bloc contient un type et des données. La charge utile du bundle est dans un bloc de type 1, les autres types servant à divers détails (qui, dans IP, seraient mis dans les options du paquet en IPv4 et dans un en-tête d'extension en IPv6). Par exemple, un bloc de type 7 sert à transporter l'âge du bundle, alors qu'un bloc de type 10 à indiquer le nombre de sauts maximum et le nombre déjà effectués. Les différents types figurent dans un registre IANA.

La section 5 du RFC précise comment on traite les bundles. Lors de la réception d'un bundle, le nœud qui n'est pas destination (dont l'identificateur n'apparait pas dans le champ de destination) doit décider s'il transmet le bundle ou pas. S'il décide de le transmettre, il doit ensuite regarder s'il « connait » le nœud de destination (s'il sait le joindre directement) ou bien s'il doit le transmettre à un nœud mieux placé. Comment trouve-t-on ces nœuds mieux placés ? De même que le RFC sur IP ne décrit pas les protocoles de routage, le Bundle Protocol ne précise pas. Cela est fait par des protocoles externes comme SABR.

Une fois prise la décision d'envoyer le bundle à un autre nœud, on sélectionne un CLA adapté à cet autre nœud et on lui transmet. (Puis on le supprime du stockage local.) Bref, tout cela ressemble beaucoup au traitement d'un paquet IP par un routeur IP classique, avec le CLA jouant le rôle de la couche 2. La plus grosse différence est sans doute que le nœud peut garder le paquet pendant un temps assez long, s'il ne peut pas le transmettre tout de suite. La gestion des files d'attentes et des retransmissions sera donc assez différente de celle d'un routeur IP.

En cas d'échec, le nœud peut décider de renvoyer le bundle à l'expéditeur ou de le jeter. Si le bundle a expiré (durée de vie dépassée), il est jeté.

À la réception d'un bundle, le nœud regarde aussi si ce bundle nécessitait un accusé de réception et, si nécessaire, il en envoie. Si le bundle a une destination locale, il est livré à la machine. (Le bundle a pu être fragmenté et, dans ce cas, il faudra attendre que tous les fragments soient là, pour le réassemblage, cf. section 5.8).

La section 6 du RFC couvre le cas des enregistrements administratifs, des messages (envoyés évidemment sous forme de bundles) qui servent à gérer le bon fonctionnement du protocole (un peu comme ICMP pour IP). Ces enregistrements sont un tableau CBOR de deux entrées, un type (un nombre) et les données, un seul type d'enregistrement administratif existe actuellement, de type 1, le rapport d'état, qui va servir à indiquer ce que le message est devenu. Son format et son contenu sont détaillés dans la section 6.1.1. Il dispose d'une liste de codes, comme 1 pour « durée de vie dépassée » ou 5 pour « je n'arrive pas à joindre la destination ».

On a vu que BP, le Bundle Protocol, dépend d'un CLA (Convergence Layer Adapter) pour parler aux couches basses. La section 7 précise ce qu'on attend de ce convergence layer :

  • Il doit évidemment permettre d'envoyer un bundle d'un nœud à l'autre,
  • il doit rendre des comptes au BP, lui disant s'il a pu transmettre le bundle ou pas,
  • il doit pouvoir recevoir des bundles et les livrer localement.
  • Certaines extensions peuvent ajouter des exigences au CLA.

Le CLA doit faire tout cela tout en respectant le réseau sous-jacent, par exemple en évitant la congestion. Notez que dans la plupart des cas d'usage de BP, la latence est telle qu'on ne peut pas compter sur les réactions du récepteur, et il faut donc se débrouiller autrement. Un exemple d'un CLA est celui avec TCP du RFC 9174 (mais dans la plupart des scénarios envisagés pour le Bundle Protocol, TCP ne sera pas utilisable).

Il y a actuellement pas moins de sept mises en œuvres différentes de ce BP (Bundle Protocol) :

Notez que deux mises en œuvre de BP ne peuvent interopérer que si elles utilisent le même CLA.

Par défaut, BP n'offre aucune sécurité (cf. section 8). Un attaquant peut suivre le trafic, le modifier, etc. Certes, notre RFC recommande un CLA « sûr » mais cela ne suffit pas. La sécurité doit être fournie par des extensions, comme celle du RFC 9172. Notons aussi que le protocole utilise à plusieurs endroits des estampilles temporelles, donc sa sécurité dépend de celle de son horloge.

L'annexe A détaille les changements depuis le RFC 5050, qui normalisait la version 6 du protocole. Outre le changemente de statut (BP est désormais une norme et plus une « expérience »), les changements techniques sont importants à tel point qu'il n'y a pas d'interopérabilité entre les deux versions. Entre autres, les concepts de node ID et endpoint ID sont désormais séparés, le premier bloc d'un bundle est désormais immuable, de nouveaux types de blocs ont été créés, l'encodage abandonne l'ancien SDNV (RFC 6256) pour CBOR, etc. (Notez qu'il existe un registre IANA des versions de BP.)

Un des avantages de CBOR est l'existence du langage de description CDDL (RFC 8610), ce qui permet de donner une description formelle des bundles dans l'annexe B. Par exemple, voici la description du premier bloc de chaque bundle, en CDDL (eid étant l'Endpoint ID) :

primary-block = [
     version: 7,
     bundle-control-flags,
     crc-type,
     destination: eid,
     source-node: eid,
     report-to: eid,
     creation-timestamp,
     lifetime: uint,
     ...
     ? crc-value,
   ]    
  

Avec un cahier des charges présentant beaucoup de ressemblances avec celui du BP, notez l'existence du système NNCP, qui est également de type « enregistre et fais suivre ». Ça semble très intéressant mais je ne l'ai jamais testé.


Téléchargez le RFC 9171


L'article seul

RFC 9170: Long-term Viability of Protocol Extension Mechanisms

Date de publication du RFC : Décembre 2021
Auteur(s) du RFC : M. Thomson (Mozilla), T. Pauly (Apple)
Pour information
Première rédaction de cet article le 1 janvier 2022


Après des années de déploiement d'un protocole sur l'Internet, lorsqu'on essaie d'utiliser des fonctions du protocole parfaitement standards et légales, mais qui avaient été inutilisées jusqu'à présent, on découvre souvent que cela ne passe pas : des programmes bogués, notamment dans les middleboxes, plantent de manière malpropre lorsqu'ils rencontrent ces (toutes relatives) nouveautés. C'est ce qu'on nomme l'ossification de l'Internet. Ce RFC de l'IAB fait le point sur le problème et sur les solutions proposées, par exemple le graissage, l'utilisation délibérée et précoce de variations, pour ne pas laisser d'options inutilisées.

Lorsqu'un protocole a du succès (cf. RFC 5218, sur cette notion de succès), on va vouloir le modifier pour traiter des cas nouveaux. Cela n'est pas toujours facile, comme le note le RFC 8170. Tout protocole a des degrés de liberté (extension points) où on pourra l'étendre. Par exemple, le DNS permet de définir de nouveaux types de données (contrairement à ce qu'on lit souvent, le DNS ne sert pas qu'à « trouver des adresses IP à partir de noms ») et IPv6 permet de définir de nouvelles options pour la destination du paquet, voire de nouveaux en-têtes d'extension. En théorie, cela permet d'étendre le protocole. Mais en pratique, utiliser ces degrés de liberté peut amener des résultats imprévus, par exemple, pour le cas du DNS, un pare-feu programmé avec les pieds qui bloque les paquets utilisant un type de données que le pare-feu ne connait pas. Ce RFC se focalise sur des couches relativement hautes, où tout fonctionne de bout en bout (et où, en théorie, les intermédiaires doivent laisser passer ce qu'ils ne comprennent pas). Les couches basses impliquent davantage de participants et sont donc plus problématiques. Ainsi, pour IPv6, l'en-tête « options pour la destination » doit normalement être ignoré et relayé aveuglément par les routeurs alors que l'en-tête « options pour chaque saut » doit (enfin, devait, avant le RFC 8200) être compris et analysé par tous les routeurs du chemin, ce qui complique sérieusement son utilisation.

Notre RFC a été développé par l'IAB dans le cadre du programme « Evolvability, Deployability, & Maintainability (EDM) ».

Déployer une nouvelle version d'un protocole, ou simplement utiliser des options qui n'avaient pas été pratiquées avant, peut donc être très frustrant. Prenons le cas imaginaire mais très proche de cas réels d'un protocole qui a un champ de huit bits inutilisé et donc le RFC d'origine dit que l'émetteur du paquet doit mettre tous ces bits à zéro, et le récepteur du paquet, en application du principe de robustesse, doit ignorer ces bits. Un jour, un nouveau RFC sort, avec une description du protocole où ces bits ont désormais une utilité. Les premiers logiciels qui vont mettre en œuvre cette nouvelle version, et mettre certains bits à un, vont fonctionner lors de tests puis, une fois le déploiement sur l'Internet fait, vont avoir des problèmes dans certains cas. Un pare-feu programmé par des incompétents va jeter ces paquets. Dans son code, il y a un test que le champ vaut zéro partout, car le programmeur n'a jamais lu le RFC et il a juste observé que ce champ était toujours nul. Cette observation a été mise dans le code et bonne chance pour la corriger. (Les DSI qui déploient ce pare-feu n'ont pas regardé s'il était programmé correctement, ils ont juste lu la brochure commerciale.) À partir de là, les programmeurs qui mettent en œuvre le protocole en question ont le choix de foncer et d'ignorer les mines, acceptant que leur programme ne marche pas si les paquets ont le malheur de passer par un des pare-feux bogués (et seront donc perdus), ou bien de revenir à l'ancienne version, ce second choix étant l'ossification : on n'ose plus rien changer de peur que ça casse quelque chose quelque part. Comme les utilisateurs ignorants attribueraient sans doute les problèmes de timeout à l'application, et pas au pare-feu mal écrit, le choix des programmeurs est vite fait : on ne déploie pas la nouvelle version. C'est d'autant plus vrai si le protocole est particulièrement critique pour le bon fonctionnement de l'Internet (BGP, DNS…) ou bien s'il y a de nombreux acteurs non coordonnés (cf. section 2.3). Bien sûr, le blocage de certains paquets peut être volontaire mais, bien souvent, il résulte de la négligence et de l'incompétence des auteurs de middleboxes (cf. section 5).

Les exemples de tels problèmes sont innombrables (l'annexe A du RFC en fournit plusieurs). Ainsi, TLS a eu bien des ennuis avec des nouvelles valeurs de l'extension signature_algorithms.

Si le protocole en question était conçu de nos jours, il est probable que ses concepteurs prendraient la précaution de réserver quelques valeurs non nulles pour le champ en question, et de demander aux programmes d'utiliser de temps en temps ces valeurs, pour être sûr qu'elles sont effectivement ignorées. C'est ce qu'on nomme le graissage et c'est une technique puissante (mais pas parfaite) pour éviter la rouille, l'ossification. (Notez que les valeurs utilisées pour le graissage ne doivent pas être consécutives, pour limiter les risques qu'un programmeur de middlebox paresseux ne les teste facilement. Et qu'il faut les réserver pour que, plus tard, l'utilisation de vraies valeurs pour ce champ ne soit pas empêchée par les valeurs de graissage.) Le graissage ne résout pas tous les problèmes puisqu'il y a toujours le risque que les valeurs utilisées pour graisser finissent par bénéficier d'un traitement de faveur, et soient acceptées, alors que les valeurs réelles poseront des problèmes.

On pourrait penser qu'une meilleure conception des protocoles éviterait l'ossification. (C'est le discours des inventeurs géniaux et méconnus qui prétendent que leur solution magique n'a aucun inconvénient et devrait remplacer tout l'Internet demain.) Après tout, le RFC 6709 contient beaucoup d'excellents conseils sur la meilleure façon de concevoir des protocoles pour qu'ils puissent évoluer. Par exemple, il insiste sur le fait que le mécanisme de négociation qui permet aux deux parties de se mettre d'accord sur une option ou une version doit être simple, pour qu'il y ait davantage de chances qu'il soit mis en œuvre correctement dans tous les programmes. En effet, en l'absence de graissage, ce mécanisme ne sera testé en vrai que lorsqu'on introduira une nouvelle version ou une nouvelle option et, alors, il sera trop tard pour modifier les programmes qui n'arrivent pas à négocier ces nouveaux cas, car leur code de négociation est bogué. Le RFC 6709 reconnait ce problème (tant qu'on n'a pas utilisé un mécanisme, on ne sait pas vraiment s'il marche) et reconnait que le conseil d'un mécanisme simple n'est pas suffisant.

Notre RFC 9170 contient d'ailleurs une petite pique contre QUIC en regrettant qu'on repousse parfois à plus tard le mécanisme de négociation de version, pour arriver à publier la norme décrivant le protocole (exactement ce qui est arrivé à QUIC, qui n'a pas de mécanisme de négociation des futures versions). Le problème est que, une fois la norme publiée et le protocole déployé, il sera trop tard…

Bref, l'analyse du RFC (section 3) est qu'il faut utiliser tôt et souvent les mécanismes d'extension. Une option ou un moyen de négocier de nouvelles options qui n'a jamais été utilisé depuis des années est probablement ossifié et ne peut plus être utilisé. C'est très joli de dire dans le premier RFC d'un protocole « cet octet est toujours à zéro dans cette version mais les récepteurs doivent ignorer son contenu car il pourra servir dans une future version » mais l'expérience prouve largement qu'une telle phrase est souvent ignorée et que bien des logiciels planteront, parfois de façon brutale, le jour où on commencer à utiliser des valeurs non nulles. Il faut donc utiliser les mécanismes ou bien ils rouillent. Par exemple, si vous concevez un mécanisme d'extension dans votre protocole, il est bon que, dès le premier jour, au moins une fonction soit mise en œuvre via ce mécanisme, pour forcer les programmeurs à en tenir compte, au lieu de simplement sauter cette section du RFC. Les protocoles qui ajoutent fréquemment des options ou des extensions ont moins de problèmes que ceux qui attendent des années avant d'exploiter leurs mécanismes d'extension. Et plus on attend, plus c'est pire. C'est pour cela que, par exemple, il faut féliciter le RIPE NCC d'avoir tenté l'annonce de l'attribut BGP 99, même si cela a cassé des choses, car si on ne l'avait pas fait (comme l'avaient demandé certaines personnes qui ne comprenaient pas les enjeux), le déploiement de nouveaux attributs dans BGP serait resté quasi-impossible.

Tester tôt est d'autant plus important qu'il peut être crucial, pour la sécurité, qu'on puisse étendre un protocole (par exemple pour l'agilité cryptographique, cf. RFC 7696). L'article de S. Bellovin et E. Rescorla, « Deploying a New Hash Algorithm » montre clairement que les choses ne se passent pas aussi bien qu'elles le devraient.

Comme dit plus haut, la meilleure façon de s'assurer qu'un mécanisme est utilisable est de l'utiliser effectivement. Et pour cela que ce mécanisme soit indispensable au fonctionnement normal du protocole, qu'on ne puisse pas l'ignorer. Le RFC cite l'exemple de SMTP : le principal mécanisme d'extension de SMTP est d'ajouter de nouveaux en-têtes (comme le Archived-At: dans le RFC 5064) or, SMTP dépend d'un traitement de ces en-têtes pour des fonctions mêmes élémentaires. Un MTA ne peut pas se permettre d'ignorer les en-têtes. Ainsi, on est sûr que toute mise en œuvre de SMTP sait analyser les en-têtes. Et, comme des en-têtes nouveaux sont assez fréquemment ajoutés, on sait que des en-têtes inconnus des vieux logiciels ne perturbent pas SMTP. Ce cas est idéal : au lieu d'un mécanisme d'extension qui serait certes spécifié dans le RFC mais pas encore utilisé, on a un mécanisme d'extension dont dépendent des fonctions de base du protocole.

Le RFC cite également le cas de SIP, qui est moins favorable : les relais ne transmettent en général pas les en-têtes inconnus, ce qui ne casse pas la communication, mais empêche de déployer de nouveaux services tant que tous les relais n'ont pas été mis à jour.

Bien sûr, aucune solution n'est parfaite. Si SMTP n'avait pas ajouté de nombreux en-têtes depuis sa création, on aurait peut-être des programmes qui certes savent analyser les en-têtes mais plantent lorsque ces en-têtes ne sont pas dans une liste limitée. D'où l'importance de changer souvent (ici, en ajoutant des en-têtes).

Souvent, les protocoles prévoient un mécanisme de négociation de la version utilisée. On parle de version différente lorsque le protocole a suffisamment changé pour qu'on ne puisse pas interagir avec un vieux logiciel. Un client SMTP récent peut toujours parler à un vieux serveur (au pire, le serveur ignorera les en-têtes trop récents) mais une machine TLS 1.2 ne peut pas parler à une machine TLS 1.3. Dans le cas le plus fréquent, la machine récente doit pouvoir parler les deux versions, et la négociation de version sert justement à savoir quelle version utiliser. Le problème de cette approche est que, quand la version 1 est publiée en RFC, avec son beau mécanisme de négociation de version, il n'y a pas encore de version 2 pour tester que cette négociation se passera bien. Celle-ci ne sortira parfois que des années plus tard et on s'apercevra peut-être à ce moment que certains programmes ont mal mis en œuvre la négociation de version, voire ont tout simplement négligé cette section du RFC…

Première solution à ce problème, utiliser un mécanisme de négociation de version située dans une couche plus basse. Ainsi, IP a un mécanisme de négociation de version dans l'en-tête IP lui-même (les quatre premiers bits indiquent le numéro de version, cf. RFC 8200, section 3) mais ce mécanisme n'a jamais marché en pratique. Ce qui marche, et qui est utilisé, c'est de se servir du mécanisme de la couche 2. Par exemple, pour Ethernet (RFC 2464), c'est l'utilisation du type de protocole (EtherType), 0x800 pour IPv4 et 0x86DD pour IPv6. Un autre exemple est l'utilisation d'ALPN (RFC 7301) pour les protocoles au-dessus de TLS. (Le RFC cite aussi la négociation de contenu de HTTP.)

Une solution récente au problème de l'ossification est le graissage, présenté en section 3.3. Décrit à l'origine pour TLS, dans le RFC 8701, il est désormais utilisé dans d'autres protocoles comme QUIC. Son principe est de réserver un certain nombre de valeurs utilisant des extensions du protocole et de s'en servir, de façon à forcer les différents logiciels, intermédiaires ou terminaux, à lire tout le RFC et à gérer tous les cas. Dans l'exemple cité plus haut d'un protocole qui aurait un champ de huit bits « cet octet est toujours à zéro dans cette version mais les récepteurs doivent ignorer son contenu car il pourra servir dans une future version », on peut réserver les valeurs 3, 21, 90 et 174 comme valeurs de graissage et l'émetteur les mettra de temps en temps dans le champ en question. Dans le cas de TLS, où le client propose des options et le serveur accepte celles qu'il choisit dans ce lot (oui, je sais, TLS est plus compliqué que cela, par exemple lorsque le serveur demande une authentification), le client annonce au hasard des valeurs de graissage. Ainsi, une middlebox qui couperait les connexions TLS serait vite détectée et, on peut l'espérer, rejetée par le marché. Le principe du graissage est donc « les extensions à un protocole s'usent quand on ne s'en sert pas ». Cela évoque les tests de fuzzing qu'on fait en sécurité, où on va essayer plein de valeurs inhabituelles prises au hasard, pour s'assurer que le logiciel ne se laisse pas surprendre. On voit aussi un risque du graissage : si les programmes bogués sont nombreux, le premier qui déploie un mécanisme de graissage va essuyer les plâtres et se faire parfois rejeter. Il est donc préférable que le graissage soit utilisé dès le début, par exemple dans un nouveau protocole.

Évidemment, la solution n'est pas parfaite. On peut imaginer un logiciel mal fait qui reconnait les valeurs utilisées pour le graissage (et les ignore) mais rejette quand même les autres valeurs pourtant légitimes. (La plupart du temps, les valeurs réservées pour le graissage ne sont pas continues, comme dans les valeurs 3, 21, 90 et 174 citées plus haut, pour rendre plus difficile un traitement spécifique au graissage.)

Bien sûr, même sans valeurs réservées au graissage, un programme pourrait toujours faire à peu près l'équivalent, en utilisant les valeurs réservées pour des expérimentations ou bien des usages privés. Mais le risque est alors qu'elles soient acceptées par l'autre partie, ce qui n'est pas le but.

Tous les protocoles n'ont pas le même style d'interaction que TLS, et le graissage n'est donc pas systématiquement possible. Et puis il ne teste qu'une partie des capacités du protocole, donc il ne couvre pas tous les cas possibles. Le graissage est donc utile mais ne résout pas complètement le problème.

Parfois, des protocoles qui ne permettaient pas facilement l'extensibilité ont été assez sérieusement modifiés pour la rendre possible. Ce fut le cas du DNS avec EDNS (RFC 6891). Son déploiement n'a pas été un long fleuve tranquille et, pendant longtemps, les réactions erronées de certains serveurs aux requêtes utilisant EDNS nécessitaient un mécanisme de repli (re-essayer sans EDNS). Il a ensuite fallu supprimer ce mécanisme de repli pour être sûr que les derniers systèmes erronés soient retirés du service, le tout s'étalant sur de nombreuses années. Un gros effort collectif a été nécessaire pour parvenir à ce résultat, facilité, dans le cas du DNS, par le relativement petit nombre d'acteurs et leur étroite collaboration.

La section 4 du RFC cite d'autres techniques qui peuvent être utilisées pour lutter contre l'ossification. D'abord, ne pas avoir trop de possibilités d'étendre le protocole car, dans ce cas, certaines possibilités seront fatalement moins testées que d'autres et donc plus fragiles si on veut s'en servir un jour.

Le RFC suggère aussi l'utilisation d'invariants. Un invariant est une promesse des auteurs du protocole, assurant que cette partie du protocole ne bougera pas (et, au contraire, que tout le reste peut bouger et qu'il ne faut pas compter dessus). Si les auteurs de logiciels lisent les RFC (une supposition audacieuse, notamment pour les auteurs de middleboxes), cela devrait éviter les problèmes avec les évolutions futures. (Il est donc toujours utile de graisser les parties du protocole qui ne sont pas des invariants.) Le RFC 5704, dans sa section 2.2, définit plus rigoureusement ce que sont les invariants. Deux exemples d'utilisation de ce concept sont le RFC 8999 (décrivant les invariants de QUIC) et la section 9.3 du RFC 8446 sur TLS. Notre RFC conseille aussi de préciser explicitement ce qui n'est pas invariant (comme le fait l'annexe A du RFC 8999), ce que je trouve contestable (il y a un risque que cette liste d'exemples de non-invariants soit interprétée comme limitative, alors que ce ne sont que des exemples).

Une autre bonne technique, que recommande notre RFC, est de prendre des mesures techniques pour empêcher les intermédiaires de tripoter la communication. Moins il y a d'entités qui analysent et interprètent les paquets, moins il y aura de programmes à vérifier et éventuellement à modifier en cas d'extension du protocole. Un bon exemple de ces mesures techniques est évidemment la cryptographie. Ainsi, chiffrer le fonctionnement du protocole, comme le fait QUIC, ne sert pas qu'à préserver la vie privée de l'utilisateur, cela sert aussi à tenir à l'écart les intermédiaires, ce qui limite l'ossification. Le RFC 8558 est une bonne lecture à ce sujet.

Bien sûr, si bien conçu que soit le protocole, il y aura des problèmes. Le RFC suggère donc aussi qu'on crée des mécanismes de retour, permettant d'être informés des problèmes. Prenons par exemple un serveur TLS qui refuserait des clients corrects, mais qui utilisent des extensions que le serveur ne gère pas correctement. Si le serveur ne journalise pas ces problèmes, ou bien que l'administrateur système ne lit pas ces journaux, le problème pourra trainer très longtemps. Idéalement, ces retours seront récoltés et traités automatiquement, et envoyés à celles et ceux qui sont en mesure d'agir. C'est plus facile à dire qu'à faire, et cela dépend évidemment du protocole utilisé. Des exemples de protocoles ayant un tel mécanisme sont DMARC (RFC 7489, avec son étiquette rua, section 7), et SMTP (avec le TLSRPT du RFC 8460).

Enfin, pour terminer, l'annexe A du RFC présente quelques exemples de protocoles et comment ils ont géré ce problème. Elle commence par le DNS (RFC 1034 et RFC 1035). Le DNS a une mauvaise expérience avec le déploiement de nouveaux types d'enregistrement qui, par exemple, provoquaient des rejets violents des requêtes DNS par certains équipements. C'est l'une des raisons pour lesquelles SPF (RFC 7208) a finalement renoncé à utiliser son propre type d'enregistrement, SPF (cf. RFC 6686) et pour lesquelles tout le monde se sert de TXT. Le problème s'est heureusement amélioré depuis la parution du RFC 3597, qui normalise le traitement des types inconnus. (Mais il reste d'autres obstacles au déploiement de nouveaux types, comme la mise à jour des interfaces « conviviales » d'avitaillement d'une zone DNS, interfaces qui mettent de nombreuses années à intégrer les nouveaux types.)

HTTP, lui, a plutôt bien marché, question extensibilité mais il a certains mécanismes d'extension que personne n'ose utiliser et qui ne marcheraient probablement pas, comme les extensions des chunks (RFC 7230, section 4.1.1) ou bien comme l'utilisation d'autres unités que les octets dans les requêtes avec intervalles (RFC 7233, section 2.2).

Et IP lui-même ? Par exemple, IP avait un mécanisme pour permettre aux équipements réseau de reconnaitre la version utilisée, permettant donc de faire coexister plusieurs versions d'IP, le champ Version (les quatre premiers bits du paquet). Mais il n'a jamais réellement fonctionné, les équipements utilisant à la place les indications données par la couche inférieure (l'« ethertype », dans le cas d'Ethernet, cf. RFC 2464). D'autres problèmes sont arrivés avec IP, par exemple l'ancienne « classe E ». Le préfixe 224.0.0.0/3 avait été réservé par le RFC 791, section 3.2, mais sans précisions (« The extended addressing mode is undefined. Both of these features are reserved for future use. »). Le RFC 988 avait ensuite pris 224.0.0.0/4 pour le multicast (qui n'a jamais été réellement déployé sur l'Internet), créant la « classe D », le reste devenant la « classe E », 240.0.0.0/4 dont on ne sait plus quoi faire aujourd'hui, même si certains voudraient la récupérer pour prolonger l'agonie d'IPv4. Son traitement spécial par de nombreux logiciels empêche de l'affecter réellement. Une solution souvent utilisée pour changer la signification de tel ou tel champ dans l'en-tête est la négociation entre les deux parties qui communiquent, mais cela ne marche pas pour les adresses (la communication peut être unidirectionnelle).

SNMP n'a pas eu trop de problèmes avec le déploiement de ses versions 2 et 3. La norme de la version 1 précisait clairement (RFC 1157) que les paquets des versions supérieures à ce qu'on savait gérer devaient être ignorés silencieusement, et cela était vraiment fait en pratique. Il a donc été possible de commencer à envoyer des paquets des versions 2, puis 3, sans casser les vieux logiciels qui écoutaient sur le même port.

TCP, par contre, a eu bien des problèmes avec son mécanisme d'extension. (Lire l'article de Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A., Handley, M., et H. Tokuda, « Is it still possible to extend TCP? ».) En effet, de nombreuses middleboxes se permettaient de regarder l'en-tête TCP sans avoir lu et compris le RFC, jetant des paquets qui leur semblaient anormaux, alors qu'ils avaient juste des options nouvelles. Ainsi, le multipath TCP (RFC 6824) a été difficile à déployer (cf. l'article de Raiciu, C., Paasch, C., Barre, S., Ford, A., Honda, M., Duchêne, F., Bonaventure, O., et M. Handley, «  How Hard Can It Be? Designing and Implementing a Deployable Multipath TCP »). TCP Fast Open (RFC 7413) a eu moins de problèmes sur le chemin, mais davantage avec les machines terminales, qui ne comprenaient pas ce qu'on leur demandait. Comme le but de TCP Fast Open était d'ouvrir une connexion rapidement, ce problème était fatal : on ne peut pas entamer une négociation lorsqu'on veut aller vite.

Et enfin, dernier protocole étudié dans cette annexe A, TLS. Là, la conclusion du RFC est que le mécanisme de négociation et donc d'extension de TLS était correct, mais que la quantité de programmes mal écrits et qui réagissaient mal à ce mécanisme l'a, en pratique, rendu inutilisable. Pour choisir une version de TLS commune aux deux parties qui veulent communiquer de manière sécurisée, la solution était de chercher la plus haute valeur de version commune (HMSV pour highest mutually supported version, cf. RFC 6709, section 4.1). Mais les innombrables bogues dans les terminaux, et dans les middleboxes (qui peuvent accéder à la négociation TLS puisqu'elle est en clair, avant tout chiffrement) ont fait qu'il était difficile d'annoncer une version supérieure sans que les paquets soient rejetés. (Voir l'expérience racontée dans ce message.)

TLS 1.3 (RFC 8446) a donc dû abandonner complètement le mécanisme HMSV et se présenter comme étant du 1.2, pour calmer les middleboxes intolérantes, dissimulant ensuite dans le ClientHello des informations qui permettent aux serveurs 1.3 de reconnaitre un client qui veut faire du 1.3 (ici, vu avec tshark) :

    TLSv1 Record Layer: Handshake Protocol: Client Hello
        Content Type: Handshake (22)
        Version: TLS 1.0 (0x0301)
        Length: 665
        Handshake Protocol: Client Hello
            Handshake Type: Client Hello (1)
            Length: 661
            Version: TLS 1.2 (0x0303)

[Ce champ Version n'est là que pour satisfaire les middleboxes.]
	    
            Extension: supported_versions (len=9)
                Type: supported_versions (43)
                Length: 9
                Supported Versions length: 8
                Supported Version: TLS 1.3 (0x0304)
                Supported Version: TLS 1.2 (0x0303)
                Supported Version: TLS 1.1 (0x0302)
                Supported Version: TLS 1.0 (0x0301)

[La vraie liste des versions acceptées était dans cette extension.]
  

Toujours à propos de TLS, SNI (Server Name Indication, cf. RFC 6066, section 3) est un autre exemple où la conception était bonne mais le manque d'utilisation de certains options a mené à l'ossification et ces options ne sont plus, en pratique, utilisables. Ainsi, SNI permettait de désigner le serveur par son nom de domaine (host_name dans SNI) mais aussi en utilisant d'autres types d'identificateurs (champ name_type) sauf que, en pratique, ces autres types n'ont jamais été utilisés et ne marcheraient probablement pas. (Voir l'article de A. Langley, « Accepting that other SNI name types will never work ».)


Téléchargez le RFC 9170


L'article seul

RFC 9167: Registry Maintenance Notification for the Extensible Provisioning Protocol (EPP)

Date de publication du RFC : Décembre 2021
Auteur(s) du RFC : T. Sattler, R. Carney, J. Kolker (GoDaddy)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF regext
Première rédaction de cet article le 26 décembre 2021


Un registre, par exemple un registre de noms de domaine, utilise parfois le protocole EPP pour la communication avec ses clients. Ce RFC décrit comment utiliser ce protocole pour informer les clients des périodes d'indisponibilité du registre, par exemple lors d'une opération de maintenance.

Aujourd'hui, un registre prévient de ses periodes d'indisponibilité prévues par divers moyens : courriers aux BE, messages sur des réseaux sociaux, page Web dédiée comme : afnic-maintenances.png

Chaque registre le fait de façon différente, il n'existe pas de règles communes, et le côté non-structuré de ces annonces fait qu'il faut une interventon humaine pour les analyser et les mettre dans un agenda. Et un BE peut devoir interagir avec de nombreux registres ! Notre RFC propose d'utiliser EPP (RFC 5730) pour ces annonces.

Donc, premier principe, puisqu'on va souvent manipuler des dates, les dates et heures seront toutes représentées en UTC et dans le format du RFC 3339. Ensuite, les annonces seront dans un élément XML <item>, de l'espace de noms urn:ietf:params:xml:ns:epp:maintenance-1.0 (enregistré à l'IANA). Parmi les sous-éléments de cet élément :

  • id, un identificateur de l'évènement,
  • systems, qui permettra de désigner les systèmes affectés,
  • environment, pour dire si l'évènement concerne la production ou bien un banc de test,
  • start et end, qui indiquent le début et la fin (prévue…) de l'évènement,
  • et plusieurs autres éléments.

Un exemple d'évènement, une intervention sur le serveur EPP epp.registry.example de production, peut être :


<maint:item>
  <maint:id>2e6df9b0-4092-4491-bcc8-9fb2166dcee6</maint:id>
  <maint:systems>
    <maint:system>
      <maint:name>EPP</maint:name>
      <maint:host>epp.registry.example</maint:host>
      <maint:impact>full</maint:impact>
    </maint:system>
  </maint:systems>
  <maint:environment type="production"/>
  <maint:start>2021-12-30T06:00:00Z</maint:start>
  <maint:end>2021-12-30T07:00:00Z</maint:end>
  <maint:reason>planned</maint:reason>
  <maint:detail>
    https://www.registry.example/notice?123
  </maint:detail>
  <maint:tlds>
    <maint:tld>example</maint:tld>
    <maint:tld>test</maint:tld>
  </maint:tlds>
</maint:item>
    
  

On voit que le serveur EPP sera arrêté pendant une heure (<impact>full</impact> indiquant une indisponibilité totale) et que cela affectera les TLD .example et .test. Une telle information, étant sous une forme structurée, peut être analysée par un programme et automatiquement insérée dans un agenda, ou un système de supervision.

Les commandes EPP exactes, maintenant (section 4 du RFC). La commande <info> peut renvoyer maintenant un élément <maint:info> qui contient l'information de maintenance. Voici l'exemple du RFC. D'abord, la question du client, qui veut de l'information sur l'évènement 2e6df9b0-4092-4491-bcc8-9fb2166dcee6 :


<info>
  <maint:info
    xmlns:maint="urn:ietf:params:xml:ns:epp:maintenance-1.0">
    <maint:id>2e6df9b0-4092-4491-bcc8-9fb2166dcee6</maint:id>
  </maint:info>
</info>

  

Puis la réponse du serveur :

    
 <response>
    <result code="1000">
       <msg>Command completed successfully</msg>
    </result>
    <resData>
      <maint:infData
        xmlns:maint="urn:ietf:params:xml:ns:epp:maintenance-1.0">
        <maint:item>
          <maint:id>2e6df9b0-4092-4491-bcc8-9fb2166dcee6
          </maint:id>
          <maint:type lang="en">Routine Maintenance</maint:type>
          <maint:systems>
            <maint:system>
              <maint:name>EPP</maint:name>
              <maint:host>epp.registry.example
              </maint:host>
              <maint:impact>full</maint:impact>
            </maint:system>
          </maint:systems>
          <maint:environment type="production"/>
          <maint:start>2021-12-30T06:00:00Z</maint:start>
          <maint:end>2021-12-30T07:00:00Z</maint:end>
          <maint:reason>planned</maint:reason>
          <maint:detail>
            https://www.registry.example/notice?123
          </maint:detail>
          <maint:description lang="en">free-text
          </maint:description>
          <maint:description lang="de">Freitext
          </maint:description>
          <maint:tlds>
            <maint:tld>example</maint:tld>
            <maint:tld>test</maint:tld>
          </maint:tlds>
          <maint:intervention>
            <maint:connection>false</maint:connection>
            <maint:implementation>false</maint:implementation>
          </maint:intervention>
          <maint:crDate>2021-11-08T22:10:00Z</maint:crDate>
        </maint:item>
      </maint:infData>
    </resData>
    ...

  

Ici, le client connaissait l'identificateur d'une opération de maintenance particulière. S'il ne le connait pas et veut récupérer une liste d'événements :


<info>
  <maint:info
    xmlns:maint="urn:ietf:params:xml:ns:epp:maintenance-1.0">
    <maint:list/>
  </maint:info>
</info>

  

Il récupérera alors une <maint:list>, une liste d'opérations de maintenance.

Le client EPP peut également être prévenu des maintenances par la commande <poll>, qui dote EPP d'un système de messagerie (RFC 5730, section 2.9.2.3). Ainsi, un message dans la boite aux lettres du client pourra être :


<response>
  <result code="1301">
    <msg>Command completed successfully; ack to dequeue</msg>
  </result>
<msgQ count="1" id="12345">
  <qDate>2021-11-08T22:10:00Z</qDate>
  <msg lang="en">Registry Maintenance Notification</msg>
</msgQ>
<resData>
  <maint:infData
    xmlns:maint="urn:ietf:params:xml:ns:epp:maintenance-1.0">
    <maint:item>
      <maint:id>2e6df9b0-4092-4491-bcc8-9fb2166dcee6</maint:id>
      <maint:pollType>create</maint:pollType>
      <maint:systems>
        <maint:system>
          <maint:name>EPP</maint:name>
          <maint:host>epp.registry.example
          </maint:host>
          <maint:impact>full</maint:impact>
...

  

La section 5 du RFC décrit la syntaxe formelle de cette extension (en XML Schema). Elle est dans le registre IANA des extensions à EPP.

Et question mises en œuvre ? Apparemment, les registres gérés par GoDaddy et Tango envoient déjà ces informations de maintenance.


Téléchargez le RFC 9167


L'article seul

RFC 9165: Additional Control Operators for Concise Data Definition Language (CDDL)

Date de publication du RFC : Décembre 2021
Auteur(s) du RFC : C. Bormann (Universität Bremen TZI)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF cbor
Première rédaction de cet article le 25 décembre 2021


Le langage CDDL (Concise Data Definition Language) est un langage de description de schémas de données, notamment pour le format CBOR. Ce nouveau RFC étend CDDL avec de nouveaux opérateurs, permettant entre autres l'addition d'entiers et la concaténation de chaines de caractères.

CDDL est normalisé dans le RFC 8610 (et le format CBOR dans le RFC 8949). Il permet l'ajout de nouveaux opérateurs pour étendre le langage, possibilité utilisée par notre nouveau RFC. Notez que, comme les modèles de données de JSON et CBOR sont très proches, les schémas CDDL peuvent également être utilisés pour JSON, ce que je fais ici pour les exemples car le JSON est plus facile à lire et à écrire.

D'abord, l'opérateur .plus. Il permet par exemple, dans la spécification d'un schéma, de faire dépendre certains nombres d'autres nombres. L'exemple ci-dessous définit un type « intervalle » où la borne supérieure doit être supérieure de 5 à la borne inférieure :

    
top = interval<3>

interval<BASE> = BASE .. (BASE .plus 5)

  

Avec un tel schéma, la valeur 4 sera acceptée mais 9 sera refusée :

% cddl tmp.cddl validate tmp.json
CDDL validation failure (nil for 9):
[9, [:range, 3..8, Integer], ""]
  

Deuxième opérateur, la concaténation, avec le nouvel opérateur .cat :

s = "foo" .cat "bar"
  

Dans cet exemple, évidemment, .cat n'est pas très utile, on aurait pu écrire la chaine complète directement. Mais .cat est plus pertinent quand on veut manipuler des chaines contenants des sauts de ligne :

s = "foo" .cat '
 bar
 baz
'
  

Ce schéma acceptera la chaine de caractère "foo\n bar\n baz\n".

Dans l'exemple ci-dessus, bar et baz seront précédés des espaces qui apparaissaient dans le code source. Souvent, on souhaite mettre ces espaces en début de ligne dans le code source, pour l'indenter joliment, mais les supprimer dans le résultat final. Cela peut se faire avec l'opérateur pour lequel notre RFC invente le joli mot de détentation (dedending), .det, qui fonctionne comme .cat mais « dédente » les lignes :

s = "foo" .det '
 bar
 baz
'
  

Cette fois, le schéma n'acceptera que la chaine "foo\nbar\nbaz\n".

Le RFC note que, comme .det est l'abréviation de dedending cat, on aurait pu l'appeler .dedcat mais cela aurait chagriné les amis des chats.

CDDL est souvent utilisé dans les normes techniques de l'Internet et celles-ci contiennent souvent des grammaires en ABNF (RFC 5234). Pour permettre de réutiliser les règles ABNF dans CDDL, et donc se dispenser d'une ennuyeuse traduction, un nouvel opérateur fait son apparition, .abnf. Le RFC donne l'exemple de la grammaire du RFC 3339, qui normalise les formats de date : abnf-rfc3339.cddl. Avec ce fichier, on peut accepter des chaines comme "2021-12-15" ou "2021-12-15T15:52:00Z". Notons qu'il reste quelques difficultés car les règles d'ABNF ne sont pas parfaitement compatibles avec celles de CDDL. Si .abnf va traiter l'ABNF comme de l'Unicode encodé en UTF-8, un autre opérateur, .abnfb, va le traiter comme une bête suite d'octets. D'autre part, comme ABNF exige souvent des sauts de ligne, les opérateurs .cat et .det vont être très utiles.

Quatrième et dernier opérateur introduit par ce RFC, .feature. À quoi sert-il ? Comme le langage CDDL peut ếtre étendu au-delà de ce qui existait dans le RFC 8610, on court toujours le risque de traiter un schéma CDDL avec une mise en œuvre de CDDL qui ne connait pas toutes les fonctions utilisées dans le schéma. Cela produit en général un message d'erreur peu clair et, surtout, cela mènerait à considérer des données comme invalides alors qu'elles sont parfaitement acceptables pour le reste du schéma. .feature sert donc à marquer les extensions qu'on utilise. Le programme qui met en œuvre CDDL pourra ainsi afficher de l'information claire. Par exemple, si on définit une personne :

person = {
     ? name: text
     ? organization: text
}
  

puis qu'on veut rajouter son groupe sanguin :

{"name": "Jean", "bloodgroup": "O+"}
  

Cet objet sera rejeté, en raison du champ bloodgroup. On va faire un schéma plus ouvert, avec .feature :

person = {
     ? name: text
     ? organization: text
     * (text .feature "further-person-extension") => any
}
  

Et, cette fois, l'objet est accepté avec un message d'avertissement clair :

% cddl person-new-feature.cddl validate tmp.json
** Features potentially used (tmp.json): further-person-extension: ["bloodgroup"]
  

Comme le schéma est assez ouvert, la fonction de génération de fichiers d'exemple de l'outil donne des résultats amusants :

% cddl person-new-feature.cddl generate
{"name": "plain", "dependency's": "Kathryn's", "marvelous": "cleavers"}
  

Les nouveaux opérateurs ont été placés dans le registre IANA. Ils sont mis en œuvre dans l'outil de référence de CDDL (le cddl utilisé ici). Écrit en Ruby, on peut l'installer avec la méthode Ruby classique :

% gem install cddl
  

Il existe une autre mise en œuvre de CDDL (qui porte malheureusement le même nom). Elle est en Rust et peut donc s'installer avec :

% cargo install cddl

Elle n'inclut pas encore les opérateurs de ce RFC :

% /home/stephane/.cargo/bin/cddl validate --cddl plus.cddl plus.json  
Validation of "plus.json" failed

error parsing CDDL: error: lexer error
  ┌─ input:8:12
  │
8 │      (BASE .plus 1) => int   ; upper bound
  │            ^^^^^ invalid control operator
  

Mais un travail est en cours pour cela.


Téléchargez le RFC 9165


L'article seul

RFC 9164: Concise Binary Object Representation (CBOR) Tags for IPv4 and IPv6 Addresses

Date de publication du RFC : Décembre 2021
Auteur(s) du RFC : M. Richardson (Sandelman Software Works), C. Bormann (Universität Bremen TZI)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF cbor
Première rédaction de cet article le 14 décembre 2021


Ce nouveau RFC normalise deux étiquettes CBOR pour représenter des adresses IP et des préfixes d'adresses.

Le format de données CBOR, normalisé dans le RFC 8949, a une liste de types prédéfinis mais on peut en créer d'autres, en étiquetant la donnée avec un entier qui permettre de savoir comment interpréter la donnée en question. Notre RFC introduit les étiquettes 52 (pour les adresses IPv4) et 54 (pour les adresses IPv6). Ah, pourquoi 52 et 54 ? Je vous laisse chercher, la solution est à la fin de l'article

La section 3 de notre RFC décrit le format. Pour chaque famille (IPv4 ou IPv6), il y a trois formats (tous avec la même étiquette) :

  • Les adresses à proprement parler, représentées sous forme d'une byte string CBOR (suite d'octets, cf. RFC 8949, section 3.1, type majeur 2) et donc pas sous la forme textuelle (celle avec les points pour IPv4 et les deux-points pour IPv6),
  • Les préfixes, représentés par un tableau de deux éléments, un entier pour la longueur du préfixe et une suite d'octets pour le préfixe lui-même (les octets nuls à la fin doivent être omis),
  • L'interface, sous forme d'un tableau de deux ou trois éléments, qui comporte une adresse IP, la longueur du préfixe sur cette interface et éventuellement un identificateur d'interface (genre eth0 sur Linux, voir la section 6 du RFC 4007 pour IPv6, et les RFC 4001 et RFC 6991 pour IPv4, mais cela peut aussi être un entier), identificateur qui est local à la machine.

La section 5 du RFC contient une description en CDDL (RFC 8610) de ces données.

J'ai écrit une mise en œuvre en Python de ce RFC, qui renvoie à un client HTTP son adresse IP, et le préfixe annoncé dans la DFZ en BGP (en utilisant pour cela les données du RIS, via le programme WhichASN). Le service est accessible à l'adresse https://www.bortzmeyer.org/apps/addresses-in-cbor, par exemple :

% curl -s https://www.bortzmeyer.org/apps/addresses-in-cbor > tmp.cbor

Le CBOR est du binaire, on peut regarde avec le programme read-cbor :

% read-cbor tmp.cbor                               
Array of 3 items
	String of length 165: Your IP address in CBOR [...]
	Tag 54
		Byte string of length 16
	Tag 54
		Array of 2 items
			Unsigned integer 32
			Byte string of length 4

On voit que le service renvoie un tableau CBOR de trois entrées :

  • Une chaine de caractères de documentation,
  • l'adresse IP (ici, de l'IPv6, d'où l'étiquette 54 et les 16 octets),
  • le préfixe routé, sous la forme d'une longueur (ici, 32 bits) et des octets non nuls dudit préfixe (ici, au nombre de 4).

Vu avec le programme cbor2diag, le même fichier :

% cbor2diag.rb tmp.cbor
["Your IP address in CBOR, done with Python 3.9.2 [...]", 
    54(h'200141D0030222000000000000000180'), 
    54([32, h'200141D0'])]

(Le préfixe du client HTTP était en effet bien 2001:41d0::/32.) Le code source de service est dans les sources du moteur de ce blog, plus précisement en wsgis/dispatcher.py.

Sinon, la raison du choix des étiquettes est que, en ASCII, 52 est le chiffre 4 et 54 est 6. Les deux étiquettes sont désormais dans le registre IANA. À noter que la représentation des adresses IP en CBOR avait été faite initialement avec les étiquettes 260 et 261, en utilisant un encodage complètement différent. 260 désignait les adresses (v4 et v6), 261, les préfixes. (Ces deux étiquettes sont marquées comme abandonnées, dans le registre IANA.) Au contraire, dans notre nouveau RFC, l'étiquette identifie la version d'IP, la distinction entre adresse et préfixe se faisant par un éventuel entier initial pour indiquer la longueur.


Téléchargez le RFC 9164


L'article seul

RFC 9162: Certificate Transparency Version 2.0

Date de publication du RFC : Décembre 2021
Auteur(s) du RFC : B. Laurie, A. Langley, E. Kasper, E. Messeri (Google), R. Stradling (Sectigo)
Expérimental
Réalisé dans le cadre du groupe de travail IETF trans
Première rédaction de cet article le 10 décembre 2021


Le système de gestion de certificats PKIX (dérivé des certificats X.509) a une énorme faiblesse. N'importe quelle AC peut émettre un certificat pour n'importe quel nom de domaine. Il ne suffit donc pas de bien choisir son AC, votre sécurité dépend de toutes les AC. Ce RFC propose une approche pour combler cette faille de sécurité : encourager/obliger les AC à publier « au grand jour » les certificats qu'elles émettent. Un titulaire d'un certificat qui craint qu'une AC n'émette un certificat à son nom sans son autorisation n'a alors qu'à surveiller ces publications. (Il peut aussi découvrir à cette occasion que sa propre AC s'est fait pirater ou bien est devenue méchante et émet des certificats qu'on ne lui a pas demandés. L'idée est aussi d'empêcher l'émission « discrète » de vrais/faux certificats qui seraient ensuite utilisés uniquement à certains endroits.) Ce système, dit « Certificate Transparency » (CT) avait initialement été normalisé dans le RFC 6962, que notre RFC remplace, le protocole passant à une nouvelle version, la v2 (toujours considérée comme expérimentale).

Le principe est donc de créer des journaux des certificats émis. Le journal doit être public, pour que n'importe qui puisse l'auditer (section 4 du RFC). Il doit être en mode « ajout seulement » pour éviter qu'on puisse réécrire l'histoire. Les certificats sont déjà signés mais le journal a ses propres signatures, pour prouver son intégrité. Conceptuellement, ce journal est une liste de certificats dans l'ordre de leur création. Toute AC peut y ajouter des certificats (la liste ne peut pas être ouverte en écriture à tous, de crainte qu'elle ne soit remplie rapidement de certificats bidons). En pratique, le RFC estime que la liste des AC autorisées à écrire dans le journal sera l'union des listes des AC acceptées dans les principaux navigateurs Web (voir aussi les sections 4.2 et 5.7, chaque journal est responsable de ce qu'il accepte ou pas comme soumissions).

À chaque insertion, le journal renvoie à l'AC une estampille temporelle signéee (SCT, pour Signed Certificate Timestamp), permettant à l'AC de prouver qu'elle a bien enregistré le certificat. Si on a cette signature mais que le certificat est absent du journal, l'observateur aura la preuve que le journal ne marche pas correctement. Le format exact de cette estampille temporelle est décrit en section 4.8. Idéalement, elle devra être envoyée au client par les serveurs TLS, dans l'extension TLS transparency_info (désormais enregistrée à l'IANA), comme preuve de la bonne foi de l'AC (cf. section 6 et notamment 6.5, car c'est plus compliqué que cela). Bien sûr, cette validation de l'insertion dans un journal ne dispense pas de la validation normale du certificat (un certificat peut être journalisé et mensonger à la fois). Notez aussi que, si le serveur TLS n'envoie pas toutes les données au client, celui-ci peut les demander au journal (opérations /get-proof-by-hash et get-all-by-hash) mais, ce faisant, il informe le journal des certificats qui l'intéressent et donc, par exemple, des sites Web qu'il visite.

De même, une extension à OCSP (RFC 6960) peut être utilisée pour appuyer les réponses OCSP. On peut même inclure les preuves d'inclusion dans le journal dans le certificat lui-même, ce qui permet d'utiliser des serveurs TLS non modifiés.

Les titulaires de certificats importants, comme Google, mais aussi des chercheurs, des agences de sécurité, etc, pourront alors suivre l'activité de ces journaux publics (section 8.2 du RFC). Ce qu'ils feront en cas de détection d'un certificat anormal (portant sur leur nom de domaine, mais qu'ils n'ont pas demandé) n'est pas spécifié dans le RFC : cela dépend de la politique de l'organisation concernée. Ce RFC fournit un mécanisme, son usage n'est pas de son ressort. Ce journal n'empêchera donc pas l'émission de vrais/faux certificats, ni leur usage, mais il les rendra visibles plus facilement et sans doute plus vite.

Notons que les certificats client, eux, ne sont typiquement pas journalisés (rappelez-vous que les journaux sont publics et que les certificats client peuvent contenir des données personnelles). Le serveur TLS ne peut donc pas utiliser Certificate Transparency pour vérifier le certificat du client. (Le RFC estime que le principal risque, de toute façon, est celui d'usurpation du serveur, pas du client.)

Pour que cela fonctionne, il faudra que les clients TLS vérifient que le certificat présenté est bien dans le journal (autrement, le méchant n'aurait qu'à ne pas enregistrer son vrai/faux certificat, cf. section 8.3 du RFC).

En pratique, la réalisation de ce journal utilise un arbre de Merkle, une structure de données qui permet de mettre en œuvre un système où l'ajout de certificats est possible, mais pas leur retrait, puisque chaque nœud est un condensat de ses enfants (voir aussi le RFC 8391). La section 2 du RFC détaille l'utilisation de ces arbres et la cryptographie utilisée. (Et les exemples en section 2.1.5 aident bien à comprendre comment ces arbres de Merkle sont utilisés.)

Le protocole utilisé entre les AC et le journal, comme celui utilisé entre les clients TLS et le journal, est HTTP et le format des données du JSON (section 5, qui décrit l'API). Ainsi, pour ajouter un certificat nouvellement émis au journal géré sur sunlight-log.example.net, l'AC fera :

POST https://sunlight-log.example.net/ct/v2/submit-entry

et le corps de la requête HTTP sera un tableau JSON de certificats encodés en Base64. La réponse contiendra notamment l'estampille temporelle (SCT pour Signed Certificate Timestamp). S'il y a un problème, le client recevra une des erreurs enregistrées. Pour récupérer des certificats, le programme de surveillance fera par exemple :

GET https://sunlight-log.example.net/ct/v2/get-entries

D'autres URL permettront de récupérer les condensats cryptographiques contenus dans l'arbre de Merkle, pour s'assurer qu'il est cohérent.

Comme il n'existe (en octobre 2021) aucune mise en œuvre de la version 2 du protocole, voici quelques exemples, utilisant des journaux réels, et la version 1 du protocole (notez le v1 dans l'URL). Pour trouver les coordonnées des journaux, j'ai utilisé la liste « officielle » du projet. Notez que tous les journaux qui y figurent ne fonctionnent pas correctement. Notez aussi que, comme pour les AC ou les serveurs de clés PGP, il n'y a pas de « journal de référence », c'est à chacun de choisir les journaux où il va écrire, et qu'il va lire. Le script test-ct-logs-v1.py teste la liste, et trouve :

50 logs are OK, 54 are currently broken
  

Si vous vous demandez pourquoi un même opérateur a plusieurs journaux, c'est en partie parce qu'il n'est pas possible de faire évoluer les algorithmes cryptographiques au sein d'un même journal (cf. section 9 du RFC) et qu'il faut donc de temps en temps créer un nouveau journal. Un journal est identifié par son URL, sa clé publique et (en v2) par son OID. Par exemple, le journal « Nimbus 2021 » de Cloudflare est en https://ct.cloudflare.com/logs/nimbus2021/ et a la clé MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAExpon7ipsqehIeU1bmpog9TFo4Pk8+9oN8OYHl1Q2JGVXnkVFnuuvPgSo2Ep+6vLffNLcmEbxOucz03sFiematg== (je ne donne pas l'OID, il n'existe pas encore de journaux qui utilisent la version 2 du protocole). Voici un exemple d'utilisation (le STH est le Signed Tree Head, la valeur de la racine de l'arbre de Merkle, cf. section 4.2.10) :

% curl -s https://ct.cloudflare.com/logs/nimbus2021/ct/v1/get-sth | jq .                   
{
  "tree_size": 408013312,
  "timestamp": 1634739692384,
  "sha256_root_hash": "7GnGjI7L6O5fn8kQKTdJG2riShNTTbcjRP2WbLoZrvQ=",
  "tree_head_signature": "BAMARjBEAiAQ0gb6udc9e28ykUGUzl0HV8U5NlJhPVSTUF4JtXGSeQIgcSbZ9kRgttGzpFETFem4eCv7GgUYPUUnl7lTGGFZSHM="
}
  

Plus de quatre cents millions de certificats, fichtre. Si on veut récupérer les deux premiers certificats journalisés :

% curl -s https://ct.cloudflare.com/logs/nimbus2021/ct/v1/get-entries\?start=0\&end=1 | jq .
{
  "entries": [
    {
      "leaf_input":
    [L'exemple est fait avec un journal v1, l'objet JSON renvoyé est
    différent en v2.]
  

Mais vous pouvez aussi utiliser Certificate Transparency (CT) sans aller regarder du JSON. Un service en ligne comme https://crt.sh vous permet de scruter un journal. Voici par exemple l'actuel certificat de ce blog, ou bien tous les certificats au nom de la Banque Postale (CT est utile pour le renseignement).

On a vu que plusieurs acteurs intervenaient, le gérant du journal, les AC, les gens qui regardent le journal, par exemple pour l'auditer, etc. Une utilisation courante de CT est pour surveiller l'émission de certificats au nom de son entreprise ou de son organisation, pour repérer les AC qui créent des certificats incorrects. Pour éviter de programmer tout cela de zéro en partant du RFC, on peut utiliser le service Certstream, qui sert d'intermédiaire avec plusieurs journaux, et sa bibliothèque Python. Ainsi, le petit script test-certstream.py permet de détecter tous les certificats émis pour les noms de domaine en .fr :

% pip3 install certstream
  
% ./test-certstream.py
...
[2021-10-23T13:21:46] pimpmydrone.fr (SAN: www.pimpmydrone.fr)
[2021-10-23T13:21:51] pascal-goldbach.fr (SAN: www.pascal-goldbach.fr)
[2021-10-23T13:21:52] leginkobiloba.fr (SAN: www.leginkobiloba.fr)
[2021-10-23T13:21:52] promabat-distribution.fr (SAN: www.promabat-distribution.fr)
[2021-10-23T13:21:53] maevakaliciak.fr (SAN: mail.maevakaliciak.fr, www.maevakaliciak.fr)
[2021-10-23T13:21:55] pascal-goldbach.fr (SAN: www.pascal-goldbach.fr)
[2021-10-23T13:21:56] maevakaliciak.fr (SAN: mail.maevakaliciak.fr, www.maevakaliciak.fr)
[2021-10-23T13:21:57] blog.nicolas-buffart.itval.fr (SAN: euromillions-generator.itval.fr, itval.fr, loto-generator.itval.fr, password-generator.itval.fr, www.blog.nicolas-buffart.itval.fr, www.euromillions-generator.itval.fr, www.itval.fr, www.loto-generator.itval.fr, www.password-generator.itval.fr)
...

Bien sûr, cela fait beaucoup (regardez les intervalles entre deux messages). En pratique, on modifierait sans doute ce script pour ne regarder que les noms de son organisation. Ainsi, vous pouvez détecter les certificats et chercher ensuite s'ils sont légitimes (ce qui, dans certaines organisations très cloisonnées n'ira pas de soi…).

À part Certstream, Samuel Bizien Filippi me suggère CertSpotter mais qui me semble uniquement payant. Il a une API. Elle peut être utilisée par le programme check_ct_logs, qui peut être utilisé comme script de test pour les programmes de supervision comme Icinga.

Le projet « Certificate Transparency » (largement impulsé par Google) a un site officiel (lecture recommandée) et, une liste de diffusion (sans compter le groupe de travail IETF TRANS, mais qui se limitait à la normalisation, il ne parle pas des aspects opérationnels, et il a de toute façon été clos en août 2021). Questions logiciels, si vous voulez créer votre propre journal, il y a le programme de Google.

Aujourd'hui, on peut dire que « Certificate Transparency » est un grand succès. La plupart (voire toutes ?) des AC y participent, il existe de nombreux journaux publics, et ils sont fréquemment utilisés pour l'investigation numérique (voire pour le renseignement, puisqu'on peut savoir, via les journaux, les noms de domaine pas encore annoncés, ce qui a parfois été cité comme une objection contre CT). Un bon exemple est celui de l'attaque « moyen-orientale » de 2018 (mais il y a aussi l'affaire du certificat révoqué de la Poste). Par contre, un client TLS ne peut pas encore être certain que tous les certificats seront dans ces journaux, et ne peut donc pas encore refuser les serveurs qui ne signalent pas la journalisation du certificat. Et le navigateur Firefox ne teste pas encore la présence des certificats dans le sjournaux.

Un point amusant : le concept de « Certificate Transparency » montre qu'il est parfaitement possible d'avoir un livre des opérations publiquement vérifiable sans chaine de blocs. La chaine de blocs reste nécessaire quand on veut autoriser l'écriture (et pas juste la lecture) au public.

La section 1.3 du RFC résume les principaux changements entre les versions 1 (RFC 6962) et 2 du protocole :

  • Les algorithmes cryptographiques utilisés sont désormais dans des registres IANA,
  • certains échanges utilisent désormais le format CMS (RFC 5652),
  • les journaux qui étaient auparavant idenfiés par un condensat de leur clé publique le sont désormais par un OID, enregistrés à l'IANA (aucun n'est encore attribué),
  • nouvelle fonction get-all-by-hash dans l'API,
  • remplacement de l'ancienne extension TLS signed_certificate_timestamp (valeur 18) par transparency_info (valeur 52, et voir aussi le nouvel en-tête HTTP Expect-CT: d'un futur RFC,
  • et d'autres changements, dans les structures de données utilisées.

CT ne change pas de statut avec la version 2 : il est toujours classé par l'IETF comme « Expérimental » (bien que largement déployé). La sortie de cette v2 n'est pas allée sans mal (le premier document étant sorti en février 2014), avec par exemple aucune activité du groupe pendant la deuxième moitié de 2020.

Une des plus chaudes discussions pour cette v2 avait été la proposition de changer l'API pour que les requêtes, au lieu d'aller à <BASE-URL>/ct/v2/ partent du chemin /.well-known/ du RFC 8615. Cette idée a finalement été rejetée, malgré le RFC 8820, qui s'oppose à cette idée de chemins d'URL en dur.


Téléchargez le RFC 9162


L'article seul

RFC 9157: Revised IANA Considerations for DNSSEC

Date de publication du RFC : Novembre 2021
Auteur(s) du RFC : P. Hoffman (ICANN)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF dnsop
Première rédaction de cet article le 1 décembre 2021


Rien de très grave dans ce nouveau RFC, qui règle un problème surtout bureaucratique, le fait que les politiques d'inclusion dans les registres IANA pour certains algorithmes utilisés par DNSSEC n'étaient pas parfaitement alignées.

En effet, le RFC 6014 avait modifié la politique d'enregistrement des algorithmes cryptographiques de « Action de normalisation » à la plus laxiste « RFC nécessaire » (rappelez-vous que tous les RFC ne sont pas des normes, voir le RFC 8126 qui décrit ces politiques possibles). Mais cette « libéralisation » laissait de côté certains algorithmes, ceux utilisés pour les enregistrements DS (RFC 4034), et ceux utilisés pour NSEC3 (RFC 5155), qui restaient en « Action de normalisation ». Notre nouveau RFC aligne les politiques d'enregistrement des algorithmes utilisés pour les DS et pour NSEC3 pour qu'ils soient eux aussi « RFC nécessaire ».

Il modifie également le RFC 8624 pour préciser que les algorithmes normalisés dans des RFC qui ne sont pas sur le chemin des normes sont également couverts par les règles du RFC 8624 ; en gros, ils sont facultatifs (MAY dans le langage du RFC 2119).

Les registres concernés sur celui sur NSEC3 et celui sur DS. Ils portent désormais la mention RFC Required.

Comme l'enregistrement d'algorithmes va, du fait de ce RFC, être plus léger, cela facilitera l'enregistrement de bons algorithmes, mais aussi de mauvais. Le programmeur qui met en œuvre DNSSEC, ou l'administratrice système qui le déploie, ne doit donc pas considérer que la présence dans un registre IANA vaut forcément approbation de la solidité cryptographique de l'algorithme. Il faut consulter la littérature technique avant d'utiliser ces algorithmes.


Téléchargez le RFC 9157


L'article seul

RFC 9156: DNS Query Name Minimisation to Improve Privacy

Date de publication du RFC : Novembre 2021
Auteur(s) du RFC : S. Bortzmeyer (AFNIC), R. Dolmans (NLnet Labs), P. Hoffman (ICANN)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF dnsop
Première rédaction de cet article le 19 novembre 2021


Protéger la vie privée sur l'Internet nécessite au moins deux techniques : chiffrer les données en transit pour éviter leur lecture par des tiers et minimiser les données qu'on envoie, pour éviter les abus par les récepteurs des données. Ce deuxième point, pourtant bien mis en avant dans la loi Informatique & Libertés ou dans le RGPD est souvent oublié. Ce RFC applique ce principe au DNS : il ne faut pas envoyer aux serveurs faisant autorité le nom de domaine complet mais seulement la partie du nom de domaine qui lui est strictement nécessaire pour répondre, le minimum. Cette norme succède au RFC 7816, qui était purement expérimental alors que cette minimisation de la requête (QNAME minimisation) est désormais une norme. Le principal changement est la recommandation d'utiliser le type de données A (adresse IPv4) et plus NS (serveurs de noms).

Ce principe de minimisation, qui devrait être central dans toute approche de la protection de la vie privée est également exposé dans le RFC 6973, section 6.1. Le DNS violait ce principe puisque, traditionnellement, un résolveur DNS qui recevait une demande d'information sur www.foobar.example transmettait aux serveurs faisant autorité la question complète, alors que, par exemple, les serveurs faisant autorité pour la racine ne connaissent que les TLD et que leur demander simplement des informations sur le TLD .example aurait suffi. (Voir le RFC 7626 pour une analyse complète des relations entre le DNS et la vie privée.) Cette tradition (qui ne s'appuyait sur aucune norme technique) est remise en cause par la QNAME minimisation qui demande au contraire qu'on n'envoie aux serveurs faisant autorité que le nom minimal (example à la racine, foobar.example aux serveurs du TLD .example, etc).

Cette minimisation est unilatérale, elle ne nécessite qu'un changement des résolveurs, sans toucher aux serveurs faisant autorité puisqu'elle ne change pas le protocole DNS. Depuis la sortie du RFC 7816, en 2016, elle a été largement déployée (si le résolveur que vous utilisez ne le fait pas, réclamez-le à votre service informatique !).

Le précédent RFC sur cette technique, le RFC 7816 avait le statut d'expérimentation alors que notre RFC 9156 est désormais une norme. En effet, une expérience considérable a été accumulée depuis le RFC 7816, qui a été mis en œuvre dans pratiquement tous les résolveurs, et souvent activé. Le FUD souvent entendu comme quoi la QNAME minimisation allait tuer Internet et des chatons a été largement réfuté. Les leçons tirées sont documentées dans « DNSThought QNAME minimisation results. Using Atlas probes », « Maximizing Qname Minimization: A New Chapter in DNS Protocol Evolution », « Measuring Query Name Minimization » et « A First Look at QNAME Minimization in the Domain Name System ».

Maintenant, la pratique, comment fait-on de la QNAME minimisation ? La question envoyée par le résolveur au serveur faisant autorité comprend un QNAME (Query Name, le nom demandé) et un QTYPE (Query Type, le type de données, par exemple serveur de courrier, adresse IP, texte libre, etc). Avec la QNAME minimisation, le nom doit être le nom le plus court possible. Quand le résolveur interroge un serveur racine, il n'envoie comme QNAME que le TLD, par exemple. Trouver « le plus court possible » n'est pas forcément trivial en raison des coupures de zone. Dans un nom comme miaou.foo.bar.example, foo.bar.example et bar.example font peut-être partie de la même zone (et ont donc les mêmes serveurs faisant autorité) et peut-être pas. Rien dans la syntaxe du nom ne l'indique. Contrairement à une idée fausse et répandue, il n'y a pas forcément une coupure de zone pour chaque point dans le nom. Trouver les coupures de zone est expliqué dans le RFC 2181, section 6. Un résolveur qui valide avec DNSSEC doit savoir trouver ces coupures, pour savoir à qui demander les enregistrements de type DS. Les autres (mais quelle idée, en 2021, d'avoir un résolveur qui ne valide pas) doivent s'y mettre. Si, par exemple, foo.bar.example et bar.example sont dans la même zone, le résolveur qui veut trouver des données associées à miaou.foo.bar.example va envoyer le QNAME example à la racine, puis bar.example au serveur du TLD, puis miaou.foo.bar.example au serveur de bar.example. (Avant la QNAME minimisation, il aurait envoyé le QNAME miaou.foo.bar.example à tout le monde.)

Cela, c'était pour le QNAME. Et le QTYPE ? On peut choisir celui qu'on veut (à l'exception de ceux qui ne sont pas dans la zone, comme le DS), puisque les délégations de zones ne dépendent pas du type. Mais, et c'est un sérieux changement depuis le RFC 7816, notre RFC recommande le type A (ou AAAA), celui des adresses IP, et plus le type NS (les serveurs de noms), que recommandait le RFC 7816. Deux raisons à ce changement :

  • Certaines middleboxes boguées jettent les questions DNS portant sur des types qu'elles ne connaissent pas. Le type A passe à coup sûr.
  • Le but de la QNAME minimisation étant la protection de la vie privée, il vaut mieux ne pas se distinguer et, notamment, ne pas dire franchement qu'on fait de la QNAME minimisation (les requêtes explicites pour le type NS étaient rares). Un serveur faisant autorité, ou un surveillant qui espionne le trafic, ne peut donc pas déterminer facilement si un client fait de la QNAME minimisation.

Vous voyez ici le schéma de la résolution DNS sans la QNAME minimisation puis avec : resolution-dns-sans-qnamemin resolution-dns-avec-qnamemin

Dans certains cas, la QNAME minimisation peut augmenter le nombre de requêtes DNS envoyées par le résolveur. Si un nom comporte dix composants (ce qui arrive dans des domaines ip6.arpa), il faudra dans certains cas dix requêtes au lieu de deux ou trois. Les RFC 8020 et RFC 8198 peuvent aider à diminuer ce nombre, en permettant la synthèse de réponses par le résolveur. Une autre solution est de ne pas ajouter un composant après l'autre en cherchant le serveur faisant autorité mais d'en mettre plusieurs d'un coup, surtout après les quatre premiers composants.

Un algorithme complet pour gérer la QNAME minimisation figure dans la section 3 du RFC.

Notez que, si vous voulez voir si votre résolveur fait de la QNAME minimisation, vous pouvez utiliser tcpdump pour voir les questions qu'il pose mais il y a une solution plus simple, la page Web de l'OARC (dans les DNS features).

Un test avec les sondes RIPE Atlas semble indiquer que la QNAME minimisation est aujourd'hui largement répandue (les deux tiers des résolveurs utilisés par ces sondes) :

% blaeu-resolve --requested 1000 --type TXT   qnamemintest.internet.nl 
["hooray - qname minimisation is enabled on your resolver :)!"] : 651 occurrences 
["no - qname minimisation is not enabled on your resolver :("] : 343 occurrences 
Test #33178767 done at 2021-11-05T14:41:02Z
  

Il existe aussi une étude récente sur la QNAME minimization en République Tchèque.

Comme son prédécesseur, ce RFC utilise (prétend Verisign) un brevet. Comme la plupart des brevets logiciels, il n'est pas fondé sur une réelle invention (la QNAME minimisation était connue bien avant le brevet).

Ah, et vous noterez que le développement de ce RFC, par trois auteurs, a été fait sur FramaGit.


Téléchargez le RFC 9156


L'article seul

RFC des différentes séries : 0  1000  2000  3000  4000  5000  6000  7000  8000  9000