Je suis Charlie

Autres trucs

Accueil

Seulement les RFC

Seulement les fiches de lecture

Ève

Ce blog n'a d'autre prétention que de me permettre de mettre à la disposition de tous des petits textes que j'écris. On y parle surtout d'informatique mais d'autres sujets apparaissent parfois.


À propos d'une tribune « Contre le numérique à l’école »

Première rédaction de cet article le 8 avril 2018


Dans Libération daté du 5 avril 2018, on a pu lire une tribune d'« un collectif d'enseignants » s'opposant vigoureusement au numérique à l'école. Quels étaient leurs arguments ?

Ils étaient variés. On y trouvait une critique de la pression qui pousse à acheter toujours plus d'équipements numériques, une inquiétude face aux conséquences « psychologiques et cognitives » qu'aurait le numérique, un reproche fait à Facebook de chercher délibérement à rendre ses utilisateurs « accros », un scepticisme vis-à-vis du numérique présenté comme solution magique à tous les problèmes…

On le voit dans cette liste, il y a plein d'arguments auxquels je suis sensible. En effet, les vendeurs comme Apple font tout leur possible pour vendre leurs produits, y compris avec la complicité de l'Éducation Nationale. En effet, Facebook joue un rôle très néfaste de plein de façons. Et, c'est sûr, le numérique ne résout pas tous les problèmes : on n'en finit pas avec l'échec scolaire juste en distribuant des tablettes, comme c'est pourtant souvent affirmé dans les discours ministériels. Mais le problème est que leur liste est vraiment fourre-tout.

Bien sûr, les vendeurs… vendent. Mais ils n'existent pas que dans le numérique ! Dans le domaine du livre, est-ce que Gallimard ou Hachette sont moins des entreprises capitalistes que Microsoft ou Samsung ? Les auteurs dénoncent « une boulimie consumériste » mais elle est une conséquence du capitalisme, pas une spécificité du numérique.

Ensuite, je ne suis pas moi-même un utilisateur de Facebook donc je ne vais pas défendre ce service, mais, ici, quel rapport avec le numérique ? De même que le numérique ne se réduit pas à l'Internet, l'Internet ne se réduit pas au Web, et le Web ne se réduit pas à Facebook. Ces nuances sont trop compliquées ? Pas pour des enseignants, j'espère, qui doivent justement apprendre aux enfants des points délicats et subtils. Commencer par leur expliquer que le Web est bien plus riche que Facebook et offre bien d'autres possibilités serait un bon départ.

Et l'affirmation comme quoi le numérique n'est pas la solution miracle ? Clairement, il ne l'est pas. Mais cela veut-il dire qu'il est complètement inutile, et peut être ignoré complètement ? Une bonne partie du corps enseignant avait déjà suivi ce raisonnement pour le cinéma, la bande dessinée et la télévision, avec le résultat qu'on sait. On retrouve ici une démarche classique des conservateurs : protester contre chaque nouveauté, refuser de considérer son utilisation, puis s'y mettre quand cette nouveauté a été remplacée par une autre. J'ai entendu lors d'une réunion au lycée un enseignant d'économie se plaindre de ce que les enfants ne regardaient pas assez la télévision, « par la faute d'Internet » et ne connaissaient pas assez l'actualité. Quand on sait quelle fut la réaction de ces conservateurs à la télévision, on ne peut qu'être assez étonné de cet amour tardif pour le petit écran.

Plus grave, la tribune publiée dans Libération reprend une légende urbaine, celle comme quoi « les cadres de la Silicon Valley [protègent] leurs propres enfants des écrans, dans et en dehors de l’école ». Cette légende a pourtant été réfutée plusieurs fois (voir par exemple l'article d'Emmanuel Davidenkoff ou bien la chronique de Xavier de la Porte). Mais elle continue à circuler, sans tenir compte des faits. C'est inquiétant pour des enseignants qui ont à former l'esprit critique des enfants, à leur apprendre à se méfier des fake news, à leur montrer l'indispensable questionnement devant les légendes répétées en boucle.

Pourtant, il y aurait des tas de choses à critiquer dans l'Éducation Nationale, à propos du numérique. C'est le cas par exemple du scandaleux accord entre Microsoft et l'Éducation Nationale (accord ancien mais régulièrement reconduit fièrement par le gouvernement), qui sous-traite l'éducation au numérique à une entreprise de logiciels privateurs. Mais les auteurs n'en parlent pas. Je soupçonne que c'est parce qu'ils ne suivent pas tellement ce qui se passe dans le monde du numérique et de l'éducation…

J'aurais bien envoyé ce texte au « collectif d'enseignants » mais je n'ai pas trouvé leur adresse.


L'article seul

RFC 8352: Energy-Efficient Features of Internet of Things Protocols

Date de publication du RFC : Avril 2018
Auteur(s) du RFC : C. Gomez (UPC), M. Kovatsch (ETH Zurich), H. Tian (China Academy of Telecommunication Research), Z. Cao (Huawei Technologies)
Pour information
Réalisé dans le cadre du groupe de travail IETF lwig
Première rédaction de cet article le 7 avril 2018


Les objets contraints, engins connectés ayant peu de capacités (un capteur de température dans la nature, par exemple), ont en général une réserve d'énergie électrique très limitée, fournie par des piles ou batteries à la capacité réduite. L'usage des protocoles de communication traditionnels, souvent très bavards, épuiserait rapidement ces réserves. Ce RFC étudie les mécanismes utilisables pour limiter la consommation électrique, et faire ainsi durer ces objets plus longtemps.

La plupart des protocoles de couche 2 utilisés pour ces « objets contraints » disposent de fonctions pour diminuer la consommation électrique. Notre RFC décrit ces fonctions, et explique comment les protocoles de couches supérieures, comme IP peuvent en tirer profit. Si vous ne connaissez pas le monde des objets contraints, et les problèmes posés par leur connexion à l'Internet, je recommande fortement la lecture des RFC 6574, RFC 7228, et RFC 7102. Le but des techniques présentées dans ce RFC est bien de faire durer plus longtemps la batterie, ce n'est pas un but écologique. Si l'objet est alimenté en permanence (une télévision connectée, ou bien un grille-pain connecté), ce n'est pas considéré comme problème.

Des tas de travaux ont déjà eu lieu sur ce problème de la diminution de la consommation électrique de ces objets. Il y a eu moins d'efforts sur celle des protocoles réseau, et ce sont ces efforts que résume ce RFC. Les protocoles traditionnels étaient conçus pour des machines alimentées en permanence et pour qui la consommation électrique n'était pas un problème. Diffuser très fréquemment une information, même inutile, n'était pas perçu comme du gaspillage, contrairement à ce qui se passe avec l'Internet des Objets. (Voir le RFC 7772 pour une solution à un tel problème.)

L'IETF a déjà développé un certain nombre de protocoles qui sont spécifiques à cet « Internet des Objets ». Ce sont par exemple 6LoWPAN (RFC 6282, RFC 6775 et RFC 4944), ou bien le protocole de routage RPL (RFC 6550) ou encore l'alternative à HTTP CoAP (RFC 7252). En gros, l'application fait tourner du CoAP sur IPv6 qui est lui-même au-dessus de 6LoWPAN, couche d'adaptation d'IP à des protocoles comme IEEE 802.15.4. Mais l'angle « économiser l'énergie » n'était pas toujours clairement mis en avant, ce que corrige notre nouveau RFC.

Qu'est ce qui coûte cher à un engin connecté (cher en terme d'énergie, la ressource rare) ? En général, faire travailler le CPU est bien moins coûteux que de faire travailler la radio, ce qui justifie une compression énergique. Et, question réseau, la réception n'est pas forcément moins coûteuse que la transmission. L'étude Powertrace est une bonne source de mesures dans ce domaine mais on peut également lire « Measuring Power Consumption of CC2530 With Z-Stack ». Le RFC contient aussi (section 2) des chiffres typiques, mesurés sur Contiki et publiés dans « The ContikiMAC Radio Duty Cycling Protocol » :

  • Écouter pendant une seconde : 63 000 μJ,
  • Réception d'un paquet : 178 μJ pour un paquet diffusé et 222 μJ autrement,
  • Transmission d'un paquet : de 120 à 1 790 μJ selon les cas.

Une technique courante quand on veut réduire la consommation électrique lors de la transmission est de réduire la puissance d'émission. Mais cela réduit la portée, donc peut nécessiter d'introduire du routage, ce qui augmenterait la consommation.

On a vu que la simple écoute pouvait consommer beaucoup d'énergie. Il faut donc trouver des techniques pour qu'on puisse couper l'écoute (éteindre complètement la radio), tout en gardant la possibilité de parler à l'objet si nécessaire. Sans ce duty-cycling (couper la partie radio de l'objet, cf. RFC 7228, section 4.3), la batterie ne durerait que quelques jours, voire quelques heures, alors que certains objets doivent pouvoir fonctionner sans entretien pendant des années. Comment couper la réception tout en étant capable de recevoir des communications ? Il existe trois grandes techniques de RDC (Radio Duty-Cycling, section 3 de notre RFC) :

  • Échantillonage : on n'est pas en réception la plupart du temps mais on écoute le canal à intervalles réguliers. Les objets qui veulent me parler doivent donc émettre un signal pendant une durée plus longue que la période d'échantillonage.
  • Transmissions aux moments prévus. On annonce les moments où on est prêt à recevoir. Cela veut dire que les objets qui veulent parler avec moi doivent le faire au bon moment.
  • Écouter quand on transmet. Dans ce cas, ceux qui ont envie de me parler doivent attendre que j'émette d'abord.

Dans les trois cas, la latence va évidemment en souffrir. On doit faire un compromis entre réduire la consommation électrique et augmenter la latence. On va également diminuer la capacité du canal puisqu'il ne pourra pas être utilisé en permanence. Ce n'est pas forcément trop grave, un capteur a peu à transmettre, en général.

Il existe plein de méthodes pour gagner quelques μJ, comme le regroupement de plusieurs paquets en un seul (il y a un coût fixe par paquet, indépendamment de leur taille). Normalement, le RDC est quelque part dans la couche 2 et les protocoles IETF, situés plus haut, ne devraient pas avoir à s'en soucier. Mais une réduction sérieuse de la consommation électrique nécessite que tout le monde participe, et que les couches hautes fassent un effort, et connaissent ce que font les couches basses, pour s'adapter.

La section 3.6 de notre RFC détaille quelques services que fournissent les protocoles de couche 2 de la famille IEEE 802.11. Une station (un objet ou un ordinateur) peut indiquer au point d'accès (AP, pour access point) qu'il va s'endormir. L'AP peut alors mémoriser les trames qui lui étaient destinées, pour les envoyer plus tard. IEEE 802.11v va plus loin en incluant des mécanismes comme le proxy ARP (répondre aux requêtes ARP à la place de l'objet endormi).

Bluetooth a un ensemble de services pour la faible consommation, nommés Bluetooth LE (pour Low Energy). 6LoWPAN peut d'ailleurs en tirer profit (cf. RFC 7668).

IEEE 802.15.4 a aussi des solutions. Il permet par exemple d'avoir deux types de réseaux, avec ou sans annonces périodiques (beacons). Dans un réseau avec annonces, des machines nommés les coordinateurs envoient régulièrement des annonces qui indiquent quand on peut émettre et quand on ne peut pas, ces dernières périodes étant le bon moment pour s'endormir afin de diminuer la consommation : on est sûr de ne rien rater. Les durées de ces périodes sont configurables par l'administrateur réseaux. Dans les réseaux sans annonces, les différentes machines connectées n'ont pas d'informations et transmettent quand elles veulent, en suivant CSMA/CA.

Enfin, DECT a aussi un mode à basse consommation, DECT ULE. Elle est également utilisable avec 6LoWPAN (RFC 8105). DECT est très asymétrique, il y a le FP (Fixed Part, la base), et le PP (Portable Part, l'objet). DECT ULE permet au FP de prévenir quand il parlera (et le PP peut dormir jusque là). À noter que si la « sieste » est trop longue (plus de dix secondes), le PP devra refaire une séquence de synchronisation avec le FP, qui peut être coûteuse en énergie. Il faut donc bien calculer son coup : si on s'endort souvent pour des périodes d'un peu plus de dix secondes, le bilan global sera sans doute négatif.

La section 4 de notre RFC couvre justement ce que devrait faire IP, en supposant qu'on utilisera 6LoWPAN. Il y a trois services importants de 6LoWPAN pour la consommation électrique :

  • 6LoWPAN a un mécanisme de fragmentation et de réassemblage. IPv6 impose que les liens aient une MTU d'au moins 1 280 octets. Si ce n'est pas le cas, il faut un mécanisme de fragmentation sous IP. Mais la fragmentation n'est pas gratuite et il vaut mieux que les applications s'abstiennent de faire des paquets trop gros (un cas que traite CoAP, dans le RFC 7959).
  • 6LoWPAN sait que le processeur consomme moins d'énergie que la partie radio de l'objet connecté, et qu'il est donc rentable de faire des calculs qui diminuent la quantité de données à envoyer, notamment la compression. Par exemple, 6LoWPAN permet de diminuer sérieusement la taille de l'en-tête de paquet IPv6 (normalement 40 octets), en comptant sur le fait que les paquets successifs d'un même flot se ressemblent.
  • 6LoWPAN a un mécanisme de découverte du voisin optimisé pour les réseaux contraints, nommé 6LoWPAN-ND.

Il y a aussi des optimisations qui ne changent pas le protocole. Par exemple, Contiki ne suit pas, dans sa mise en œuvre, une stricte séparation des couches, afin de pouvoir optimiser l'activité réseau.

De même, les protocoles de routage doivent tenir compte des contraintes de consommation électrique (section 5 du RFC). Le protocole « officiel » de l'IETF pour le routage dans les réseaux contraints est RPL (RFC 6550). L'étude Powertrace déjà citée étudie également la consommation de RPL et montre qu'il est en effet assez efficace, si le réseau est stable (s'il ne l'est pas, on consommera évidemment du courant à envoyer et recevoir les mises à jours des routes). On peut adapter les paramètres de RPL, via l'algorithme Trickle (RFC 6206, rien à voir avec le protocole de transfert de fichiers de BitNet), pour le rendre encore plus économe, mais au prix d'une convergence plus lente lorsque le réseau change.

À noter que le RFC ne parle que de RPL, et pas des autres protocoles de routage utilisables par les objets, comme Babel (RFC 6126).

Et les applications ? La section 6 du RFC leur donne du boulot, à elles aussi. Bien sûr, il est recommandé d'utiliser CoAP (RFC 7252) plutôt que HTTP, entre autre en raison de son en-tête plus court, et de taille fixe. D'autre part, CoAP a un mode de pure observation, où le client indique son intérêt pour certaines ressources, que le serveur lui enverra automatiquement par la suite, lorsqu'elles changeront, économisant ainsi une requête. Comme HTTP, CoAP peut utiliser des relais qui mémorisent la ressource demandée, ce qui permet de récupérer des ressources sans réveiller le serveur, si l'information était dans le cache. D'autres protocoles étaient à l'étude, reprenant les principes de CoAP, pour mieux gérer les serveurs endormis. (Mais la plupart de ces projets semblent… endormis à l'heure actuelle.)

Enfin, la section 7 de notre RFC résume les points importants :

  • Il ne faut pas hésiter à violer le modèle en couches, en accédant à des informations des couches basses, elles peuvent sérieusement aider à faire des économies.
  • Il faut comprimer.
  • Il faut se méfier de la diffusion, qui consomme davantage.
  • Et il faut s'endormir souvent, pour économiser l'énergie (la méthode Gaston Lagaffe, même si le RFC ne cite pas ce pionnier).

Téléchargez le RFC 8352


L'article seul

RFC 8360: Resource Public Key Infrastructure (RPKI) Validation Reconsidered

Date de publication du RFC : Avril 2018
Auteur(s) du RFC : G. Huston (APNIC), G. Michaelson (APNIC), C. Martinez (LACNIC), T. Bruijnzeels (RIPE NCC), A. Newton (ARIN), D. Shaw (AFRINIC)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF sidr
Première rédaction de cet article le 6 avril 2018


La RPKI est un ensemble de formats et de règles pour certifier qui est le titulaire d'une ressource Internet, une ressource étant un préfixe d'adresses IP, un numéro de système autonome, etc. La RPKI est utilisée dans les mécanismes de sécurisation de BGP, par exemple pour vérifier qu'un AS est bien autorisé à être à l'origine d'un préfixe donné. Les règles initiales de la RPKI pour valider un certificat était trop strictes et ce RFC les assouplit légèrement (normalement, en gardant le même niveau de sécurité).

La RPKI est normalisée dans le RFC 6480. Elle prévoit notamment un système de certificats par lequel une autorité affirme qu'une autorité de niveau inférieur a bien reçu une délégation pour un groupe de ressources Internet. (On appelle ces ressources les INR, pour Internet Number Resource.) La validation des certificats est décrite dans le RFC 6487. L'ancienne règle était que le certificat de l'autorité inférieure ne devait lister que des ressources qui étaient dans le certificat de l'autorité qui signait (RFC 6487, section 7.2, notamment la condition 6 de la seconde énumération). En pratique, cette règle s'est avérée trop rigide, et la nouvelle, décrite dans notre RFC 8360 est que le certificat de l'autorité inférieure n'est accepté que pour des ressources qui étaient dans le certificat de l'autorité qui signait. S'il y a d'autres ressources, le certificat n'est plus invalide, simplement, ces ressources sont ignorées. Dit autrement, l'ensemble des ressources dont la « possession » est certifiée, est l'intersection des ressources du certificat de l'autorité parente et de celui de l'autorité fille. Cette intersection se nomme VRS, pour Verified Resource Set.

Voici d'abord une chaîne de certificats qui était valide avec l'ancienne règle, et qui l'est toujours :

Certificate 1 (trust anchor):
Issuer TA,
Subject TA,
Resources 192.0.2.0/24, 198.51.100.0/24,
      2001:db8::/32, AS64496-AS64500

Certificate 2:
Issuer TA,
Subject CA1,
Resources 192.0.2.0/24, 198.51.100.0/24, 2001:db8::/32

Certificate 3:
Issuer CA1,
Subject CA2,
Resources 192.0.2.0/24, 198.51.100.0/24, 2001:db8::/32

ROA 1:
Embedded Certificate 4 (EE certificate):
Issuer CA2,
Subject R1,
Resources 192.0.2.0/24
    

La chaîne part d'un certificat (TA, pour Trust Anchor, le point de départ de la validation). Elle aboutit à un ROA (Route Origin Authorization, cf. RFC 6482). Chaque certificat est valide puisque chacun certifie un jeu de ressources qui est un sous-ensemble du jeu de ressources de l'autorité du dessus. Idem pour le ROA.

Et voici par contre une chaîne de certificats qui était invalide selon les anciennes règles, et est désormais valide avec les règles de notre RFC 8360 :

Certificate 1 (trust anchor):
Issuer TA,
Subject TA,
Resources 192.0.2.0/24, 198.51.100.0/24,
     2001:db8::/32, AS64496-AS64500

Certificate 2:
Issuer TA,
Subject CA1,
Resources 192.0.2.0/24, 2001:db8::/32

Certificate 3 (invalid before, now valid):
Issuer CA1,
Subject CA2,
Resources 192.0.2.0/24, 198.51.100.0/24, 2001:db8::/32

ROA 1 (invalid before, now valid):
Embedded Certificate 4 (EE certificate, invalid before, now valid):
Issuer CA2,
Subject R1,
Resources 192.0.2.0/24

La chaîne était invalide car le troisième certificat ajoutait 198.51.100.0/24, qui n'était pas couvert par le certificat supérieur. Désormais, elle est valide mais vous noterez que seuls les préfixes 192.0.2.0/24 et 2001:db8::/32 sont couverts, comme précédemment (198.51.100.0/24 est ignoré). Avec les règles de notre nouveau RFC, le ROA final est désormais valide (il n'utilise pas 198.51.100.0/24). Notez que les nouvelles règles, comme les anciennes, n'autoriseront jamais l'acceptation d'un ROA pour des ressources dont l'émetteur du certificat n'est pas titulaire (c'est bien le but de la RPKI). Ce point est important car l'idée derrière ce nouveau RFC de rendre plus tolérante la validation n'est pas passée toute seule à l'IETF.

Un cas comme celui des deux chaînes ci-dessus est probablement rare. Mais il pourrait avoir des conséquences sérieuses si une ressource, par exemple un préfixe IP, était supprimée d'un préfixe situé très haut dans la hiérarchie : plein de certificats seraient alors invalidés avec les règles d'avant.

La section 4 de notre RFC détaille la procédure de validation. Les anciens certificats sont toujours validés avec l'ancienne politique, celle du RFC 6487. Pour avoir la nouvelle politique, il faut de nouveaux certificats, identifiés par un OID différent. La section 1.2 du RFC 6484 définissait id-cp-ipAddr-asNumber / 1.3.6.1.5.5.7.14.2 comme OID pour l'ancienne politique. La nouvelle politique est id-cp-ipAddr-asNumber-v2 / 1.3.6.1.5.5.7.14.3 et c'est elle qui doit être indiquée dans un certificat pour que lui soient appliquées les nouvelles règles. (Ces OID sont dans un registre IANA.) Comme les logiciels existants rejetteront les certificats avec ces nouveaux OID, il faut adapter les logiciels avant que les AC ne se mettent à utiliser les nouveaux OID (cf. section 6 du RFC). Les changements du RFC n'étant pas dans le protocole mais uniquement dans les règles de validation, le déploiement devrait être relativement facile.

Le cœur des nouvelles règles est dans la section 4.2.4.4 de notre RFC, qui remplace la section 7.2 du RFC 6487. Un nouveau concept est introduit, le VRS (Verified Resource Set). C'est l'intersection des ressources d'un certificat et de son certificat supérieur. Dans le deuxième exemple plus haut, le VRS du troisième certificat est {192.0.2.0/24, 2001:db8::/32}, intersection de {192.0.2.0/24, 2001:db8::/32} et {192.0.2.0/24, 198.51.100.0/24, 2001:db8::/32}. Si le VRS est vide, le certificat est invalide (mais on ne le rejette pas, cela peut être un cas temporaire puisque la RPKI n'est pas cohérente en permanence).

Un ROA est valide si les ressources qu'il contient sont un sous-ensemble du VRS du certificat qui l'a signé (si, rappelons-le, ce certificat déclare la nouvelle politique). La règle exacte est un peu plus compliquée, je vous laisse lire le RFC pour les détails. Notez qu'il y a également des règles pour les AS, pas seulement pour les préfixes IP.

La section 5 du RFC contient davantage d'exemples, illustrant les nouvelles règles.


Téléchargez le RFC 8360


L'article seul

RFC 8354: Use Cases for IPv6 Source Packet Routing in Networking (SPRING)

Date de publication du RFC : Mars 2018
Auteur(s) du RFC : J. Brzozowski, J. Leddy (Comcast), C. Filsfils, R. Maglione, M. Townsley (Cisco)
Pour information
Réalisé dans le cadre du groupe de travail IETF spring
Première rédaction de cet article le 29 mars 2018


Le sigle SPRING signifie « Source Packet Routing In NetworkinG ». C'est quoi, le routage par la source (source routing) ? Normalement, la transmission de paquets IP se fait uniquement en fonction de l'adresse de destination, chaque routeur sur le trajet prenant sa décision indépendemment des autres, et sans que l'émetteur original du paquet n'ait son mot à dire. L'idée du routage par la source est de permettre à cet émetteur d'indiquer par où il souhaite que son paquet passe. L'idée est ancienne, et resurgit de temps en temps sur l'Internet. Ce nouveau RFC décrit les cas où une solution de routage par la source serait utile.

L'idée date des débuts de l'Internet. Par exemple, la norme IPv4, le RFC 791, spécifie, dans sa section 3.1, deux mécanismes de routage par la source, « Loose Source Routing » et « Strict Source Routing ». Mais ces mécanismes sont peu déployés et vous n'avez guère de chance, si vous mettez ces options dans un paquet IP, de voir un effet. En effet, le routage par la source est dangereux, il permet des attaques variées, et il complique beaucoup le travail des routeurs. Le but du projet SPRING, dont c'est le deuxième RFC, est de faire mieux. Le cahier des charges du projet est dans le RFC 7855.

L'architecture technique de SPRING est dans un document pas encore publié, draft-ietf-spring-segment-routing. Ce segment routing est déjà mis en œuvre dans le noyau Linux depuis la version 4.14 (cf. le site du projet). Notre nouveau RFC 8354 ne contient, lui, que les scénarios d'usage. (Certains étaient déjà dans la section 3 du RFC 7855.) Seul IPv6 est pris en compte.

D'abord, le cas du SOHO connecté à plusieurs fournisseurs d'accès. Comme chacun de ces fournisseurs n'acceptera que des paquets dont l'adresse IP source est dans un préfixe qu'il a alloué au client, il est essentiel de pouvoir router en fonction de la source, afin d'envoyer les paquets ayant une adresse source du FAI A vers le FAI A et seulement celui-ci. Voici par exemple comment faire sur Linux, quand on veut envoyer les paquets ayant l'adresse IP source 2001:db8:dc2:45:216:3eff:fe4b:8c5b vers un routeur différent de l'habituel (le RFC 3178 peut être une bonne lecture, quoique daté, notamment sa section 5) :

#!/bin/sh

DEVICE=eth1
SERVICE=2001:db8:dc2:45:216:3eff:fe4b:8c5b
TABLE=CustomTable
ROUTER=2001:db8:dc2:45:1

echo 200 ${TABLE} >> /etc/iproute2/rt_tables
ip -6 rule add from ${SERVICE} table ${TABLE}
ip -6 route add default via ${ROUTER} dev ${DEVICE} table ${TABLE}
ip -6 route flush cache
    

Notez que la décision correcte peut être prise par la machine terminale, comme dans l'exemple ci-dessus, ou bien par un routeur situé plus loin sur le trajet (dans le projet SPRING, la source n'est pas forcément la machine terminale initiale).

Outre le fait que le FAI B rejetterait probablement les paquets ayant une adresse source qui n'est pas à lui (RFC 3704), il peut y avoir d'autres raisons pour envoyer les paquets sur une interface de sortie particulière :

  • Elle est plus rapide,
  • Elle est moins chère (pensez à un réseau connecté en filaire mais également à un réseau mobile avec forfait « illimité » ce qui, en langage telco, veut dire ayant des limites),
  • Dans le cas du télétravailleur, il peut être souhaitable de faire passer les paquets de la machine personnelle par un FAI payé par le télétravailleur et ceux de la machine de bureau par un FAI payé par l'employeur.

Autre cas où un routage par la source peut être utile, le FAI peut s'en servir pour servir certains utilisateurs ou certains usages dans des conditions différentes, par exemple avec des prix à la tête du client. Cela viole sans doute la neutralité du réseau mais c'est peut-être un scénario qui en tentera certains (sections 2.2 et 2.5 du RFC). Cela concerne le réseau d'accès (de M. Michu au FAI) et aussi le cœur de réseau ; « l'opérateur peut vouloir configurer un chemin spécial pour les applications sensibles à la latence ».

De plus haute technologie est le scénario présenté dans la section 2.3. Ici, il s'agit d'un centre de données entièrement IPv6. Cela simplifie considérablement la gestion du réseau, et cela permet d'avoir autant d'adresses qu'on veut, sans se soucier de la pénurie d'adresses IPv4. Certains opérateurs travaillent déjà à de telles configurations. Dans ce cas, le routage par la source serait un outil puissant pour, par exemple, isoler différents types de trafic et les acheminer sur des chemins spécifiques.

Si le routage par la source, une très vieille idée, n'a jamais vraiment pris, c'est en grande partie pour des raisons de sécurité. La section 4 rappelle les risques associés, qui avaient mené à l'abandon de la solution « Type 0 Routing Header » (cf. RFC 5095).


Téléchargez le RFC 8354


L'article seul

La vie privée à l'ère du RGPD

Première rédaction de cet article le 26 mars 2018


Samedi 24 mars 2018, aux JDLL (Journées du Logiciel Libre) à Lyon, j'ai fait un exposé sur la question de La vie privée sur l’Internet à l’ère du RGPD.

Je sais, le RGPD est un sujet à la mode. Mais ce n'est pas une raison pour ne pas en parler. Les supports de l'exposé :

En attendant les vidéos, voici des jolies photos de l'évènement.


L'article seul

Developing DNS-over-HTTPS clients and servers

First publication of this article on 23 March 2018


The weekend of 17-18 March 2018, I participated to the IETF 101 hackathon in London. The project was DoH, aka DNS-over-HTTPS, and the idea was to develop clients, servers, and to test that they interoperate.

DoH ( DNS-over-HTTPS) is not yet published as a RFC. One of the goals of IETF hackathons is precisely to test Internet-Drafts before they become RFC, to be reasonably sure they are not wrong, too complicated, or useless. DoH is developed in the DoH working group and currently has one Internet-Draft, the specification of DNS-over-HTTPS, draft-ietf-doh-dns-over-https. Why creating DoH? DNS privacy is the main factor behind this project. Issues with DNS privacy are documented in RFC 7626. One of them is that traffic is sent in clear and therefore can be read by any sniffer. To prevent that, there is a standard, in RFC 7858, to run DNS over TLS, using a dedicated port, 853. But this port may be easily blocked by an hostile middlebox. The only port which is always open is 443, because it's used by HTTPS. Of course, DNS-over-TLS could use port 443 but you may have DPI devices checking that it is actually HTTPS running (yes, the trafic is encrypted but think of things like TLS' ALPN). And HTTPS gives us other things: proxies, caching, availability from JavaScript code…

So, DNS-over-HTTPS. This technique allows a stub resolver to talk to a DNS resolver over a secure transport. Let's see if we can implement the draft and make this implementation work with other implementations. My personal idea was to modify the excellent getdns library to add DoH as a possible transport (DNS-over-TLS is already there). But it was too complicated for me and, moreover, Willem Toorop decided to refactor the code, to make easier to add new transports, so getdns was too "in flux" for me. (Willem worked on it during the hackathon.) Instead, I developed first a server in Python, then developed a client in Python to test my server, then tested them against other clients and servers, then developed a second client in C. Let's see the issues.

DoH requires (I know, the actual rules are more complicated than a simple requirement) HTTP/2 (RFC 7540). One of the reasons is that DNS requests can take a very variable time. You don't want your requests for datatracker.ietf.org to be delayed by a previous request for brokendomain.allserversdown.example, standing in the queue. HTTP/2, with its streams, allow requests to be run in parallel. But HTTP/2 is recent, and many libraries and servers don't support it yet, specially on stable releases of operating systems. For the Python server, I choose the Quart framework, which relies itself on hyper, an implementation of HTTP/2 in Python. Because these were recent libraries, not always available as a package for Ubuntu, I created a LXC container with the "unstable" (very recent) version of Debian. I installed Quart with pip, as well as dnspython. dnspython is required because DoH uses the DNS wire format, a binary format (other systems running DNS over HTTPS, not yet standardized, use JSON). So, I needed to pack DNS packets from data and to unpack them at the other end, hence dnspython.

Like many HTTP development frameworks for Python, Quart allows you to define code to be run in response to some HTTP methods, for a given path in the URI. For instance:

@app.route('/hello')
async def hello():
    return 'Hello\n'
    

The decorator @app.route routes requests to https://YOURDOMAIN/hello to the hello routine, which executes asynchronously (people used to Flask will recognize the syntax; those who don't know Flask should learn it, in order to be able to use Quart). More complicated:

@app.route('/dns', methods=['POST'])
async def index():
      ct = request.headers.get('content-type')
      if ct != "application/dns-udpwireformat":
          abort(415)
      data = await request.get_data()
      r = bytes(data)
      message = dns.message.from_wire(r)
      # get the DNS response from the DNS message, see later…
      return (response
           {'Content-Type': 'application/dns-udpwireformat'}) 
    

Here, we handle only POST requests, we check the Content-Type: HTTP header, we parse the body of the request with dnspython (dns.message.from_wire(…)) and we return a response with the proper content type.

How do we get the answer to a specific DNS request? We simply give it to our local resolver, with dnspython:

resolver = "::1"      
raw = dns.query.udp(message, resolver)
response = raw.to_wire()
    

The biggest goal of DoH is privacy, so we need to activate encryption:

    
tls_context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
tls_context.options |= ssl.OP_NO_TLSv1 | ssl.OP_NO_TLSv1_1 | ssl.OP_NO_COMPRESSION
tls_context.set_alpn_protocols(['h2', 'http/1.1'])
app.run(host=bind, port=port, ssl=tls_context)

(We accept HTTP/1.1, also, because we're tolerant.) To get a certificate (because, unfortunately, few programs and libraries support DANE), we use Let's Encrypt. The server I wrote cannot handle the ACME challenge. But one call to certbot certonly, choosing the option "Spin up a temporary webserver" (with my own server stopped, of course) was enough to get a nice certificate. I then load it:

tls_context.load_cert_chain(certfile='le-cert.pem', keyfile='le-key.pem')
   

Putting every together, we have the complete code quart-doh.py. You run it with simply:

% ./quart-doh.py -c -r ::1
    

Obviously, this is not a successful hackathon if you don't discover at least one bug in the library. Note it was fixed by the author even before the end of the event.

Having a server is nice but there were not many DoH clients to test it (some were developed during the hackathon). I then developed a client in Python, still with dnspython for the DNS part, but using pycurl for HTTP/2. The DNS request is built from a name entered by the user (note that the DNS query type, here, is fixed and set to ANY):

message = dns.message.make_query(queryname, dns.rdatatype.ANY)
message.id = 0 # DoH requests that
    

We use pycurl to establish a HTTP/2 connection:

c = pycurl.Curl()
c.setopt(c.URL, url) # url is the URL of the DoH server
data = message.to_wire()
c.setopt(pycurl.POST, True)
c.setopt(pycurl.POSTFIELDS, data)
c.setopt(pycurl.HTTPHEADER, ["Content-type: application/dns-udpwireformat"])
c.setopt(c.WRITEDATA, buffer)
c.setopt(pycurl.HTTP_VERSION, pycurl.CURL_HTTP_VERSION_2)
c.perform()
    

The c.setopt(pycurl.HTTP_VERSION, where we require HTTP/2, works only if the libcurl library used by pycurl has been linked with the nghttp2 library. Otherwise, you get a pycurl.error: (1, '') which is not very helpful (error 1 is CURL_UNSUPPORTED_PROTOCOL). Again, you need recent versions of everything.

We then get the answer in the buffer variable, we can parse it and do something with it:

body = buffer.getvalue()
response = dns.message.from_wire(body)    
    

The complete code is doh-client.py. You can run it this way (here using one of the public DoH servers):

% ./doh-client.py https://dns.dnsoverhttps.net/dns-query gitlab.com
...
;ANSWER
gitlab.com. 300 IN A 52.167.219.168
...
    

I also developed a C client. Because parallel programming in C is very difficult (unlike Go, where it is a pleasure), I wanted an asynchronous HTTP/2 library, in order to make it usable in the future in getdns, which is asynchronous. I use nghttp2, already mentioned, and getdns for the DNS packing and unpacking (parsing). The HTTP/2 code was shamelessly copied from a nghttp2 example, so let's focus on the DNS part. getdns provides getdns_convert_fqdn_to_dns_name to put names in DNS wire format (if you don't know the DNS, remember the wire format is different from the presentation format www.foobar.example; for instance, the wire format do not use dots) and routines like getdns_dict_set_bindata to create getdns messages :

getdns_convert_fqdn_to_dns_name (session_data->qname, dns_name_wire_fmt);
getdns_dict_set_bindata (dict, "qname", *dns_name_wire_fmt);
getdns_dict_set_int (dict, "qtype", GETDNS_RRTYPE_A);
getdns_dict_set_dict (qdict, "question", dict);
getdns_dict_set_int (rdict, "rd", 1);
getdns_dict_set_dict (qdict, "header", rdict);
    

Yes, building getdns data structures is a pain. In the end, all that was necessary was (as displayed by getdns_pretty_print_dict(qdict)):


{
  "header":
  {
    "rd": 1
  },
  "question":
  {
    "qname": <bindata for gitlab.com.>,
    "qtype": GETDNS_RRTYPE_A
  }
}

    

We then put it in DNS wire format with getdns_msg_dict2wire (qdict, buffer, &size); and give it to nghttp2. At this time, it works only for GET requests, there is something wrong in the code I used for sending the body in POST requests.

When getting the answer, getdns allows us to search info with the JSON pointer (RFC 6901) syntax (getdns does not use JSON but the data model is the same):


getdns_dict_get_int (msg_dict, "/header/rcode", &this_error);      
getdns_dict_get_bindata (msg_dict, "/answer/0/rdata/ipv4_address", &this_address_data);
char *this_address_str = getdns_display_ip_address (this_address_data);
fprintf (stdout, "The address is %s\n", this_address_str);

    

The complete code is doh-nghttp.c and can be used this way:

% ./doh-nghttp  https://dns.dnsoverhttps.net/dns-query gitlab.com
The address is 52.167.219.168

The -v option will display a lot more details.

What were the lessons learned during the hackathon? I let you see that in the presentation I gave at the DoH working group afterwards. For the other code developed during the hackathon, see the notes taken during the hackathon.

Other reports:

Many thanks to Charles Eckel for organising this wonderful event, to the other people working on DoH at the same time, making this both a fun and useful experience, and to the authors of the very good libraries I used, Quart, nghttp2, getdns and pycurl.


L'article seul

RFC 8336: The ORIGIN HTTP/2 Frame

Date de publication du RFC : Mars 2018
Auteur(s) du RFC : M. Nottingham, E. Nygren (Akamai)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF httpbis
Première rédaction de cet article le 22 mars 2018


Le concept d'origine est crucial pour la sécurité de HTTP. L'idée est d'empêcher du contenu actif (code JavaScript, par exemple) d'interagir avec des serveurs autres que ceux de l'origine, de l'endroit où on a chargé ce contenu actif. Dans la version 1 de HTTP, cela ne posait pas (trop) de problèmes. Mais la version 2 de HTTP permet d'avoir, dans une même connexion HTTP vers un serveur donné, accès à des ressources d'origines différentes (par exemple parce qu'hébergées sur des Virtual Hosts différents). Ce nouveau RFC ajoute donc au protocole HTTP/2 un nouveau type de trame, ORIGIN, qui permet de spécifier les origines utilisées dans une connexion.

L'origine est un concept ancien, mais sa description formelle n'est venue au'avec le RFC 6454, dont la lecture est fortement recommandée, avant de lire ce nouveau RFC 8336. Son application à HTTP/2, normalisé dans le RFC 7540, a posé quelques problèmes (sections 9.1.1 et 9.1.2 du RFC 7540). En effet, avec HTTP/2, des origines différentes peuvent coexister sur la même connexion HTTP. Si le serveur ne peut pas produire une réponse, par exemple parce qu'il sépare le traitement des requêtes entre des machines différentes, il va envoyer un code de retour 421, indiquant à un client HTTP de re-tenter, avec une connexion différente. Pour lui faire gagner du temps, notre nouveau RFC 8336 va indiquer préalablement les origines acceptables sur cette connexion. Le client n'aura donc pas à essayer, il saura d'avance si ça marchera ou pas. Cette méthode évite également au client HTTP de se faire des nœuds au cerveau pour déterminer si une requête pour une origine différente a des chances de réussir ou pas, processus compliqué, et qui ne marche pas toujours.

Ce n'est pas clair ? Voici un exemple concret. Le client, un navigateur Web, vient de démarrer et on lui demande de se connecter à https://www.toto.example/. Il établit une connexion TCP, puis lance TLS, et enfin fait du HTTP/2. Dans la phase d'établissement de la connexion TLS, il a récupéré un certificat qui liste des noms possibles (subjectAltName), www.toto.example mais aussi foobar.example. Et, justement, quelques secondes plus tard, l'utilisateur demande à visiter https://foobar.example/ToU/TLDR/. Un point central de HTTP/2 est la réutilisation des connexions, pour diminuer la latence, due entre autres à l'établissement de connexion, qui peut être long avec TCP et, surtout TLS. Notre navigateur va donc se dire « chic, je garde la même connexion puisque c'est la même adresse IP et que ce serveur m'a dit qu'il gérait aussi foobar.example, c'était dans son certificat » (et la section 9.1.1 du RFC 7540 le lui permet explicitement). Mais patatras, l'adresse IP est en fait celle d'un répartiteur de charge qui envoie les requêtes pour www.toto.example et foobar.example à des machines différentes. La machine qui gère foobar.example va alors renvoyer 421 Misdirected Request au navigateur qui sera fort marri, et aura perdu du temps pour rien. Alors qu'avec la trame ORIGIN de notre RFC 8336, le serveur de www.toto.example aurait dès le début envoyé une trame ORIGIN disant « sur cette connexion, c'est www.toto.example et rien d'autre ». Le navigateur aurait alors été prévenu.

La section 2 du RFC décrit en détail ce nouveau type de trame (RFC 7540, section 4, pour le concept de trame). Le type de la trame est 12 (cf. le registre des types), et elle contient une liste d'origines, chacune sous forme d'un doublet longueur-valeur. Une origine est identifiée par un nom de domaine (RFC 6454, sections 3 et 8). Il n'y a pas de limite de taille à la liste, programmeurs, faites attention aux débordements de tableau. Un nom de la liste ne peut pas inclure de jokers (donc, pas d'origine *.example.com, donc attention si vous avez des certificats utilisant des jokers). Ce type de trames doit être envoyée sur le ruisseau HTTP/2 de numéro 0 (celui de contrôle).

Comme toutes les trames d'un type inconnu du récepteur, elles sont ignorées par le destinataire. Donc, en pratique, le serveur peut envoyer ces trames sans inquiétude, le client HTTP trop vieux pour les connaitre les ignorera. Ces trames ORIGIN n'ont de sens qu'en cas de liaison directe, les relais doivent les ignorer, et ne pas les transmettre.

Au démarrage, le client HTTP/2 a un jeu d'origines qui est déterminé par les anciennes règles (section 9.1.1 du RFC 7540). S'il reçoit une trame ORIGIN, celle-ci remplace complètement ce jeu, sauf pour la première origine vue (le serveur auquel on s'est connecté, identifié par son adresse IP et, si on utilise HTTPS, par le nom indiqué dans l'extension TLS SNI, cf. RFC 6066) qui, elle, reste toujours en place. Ensuite, les éventuelles réponses 421 (Misdirected request) supprimeront des entrées du jeu d'origines.

Notez bien que la trame ORIGIN ne fait qu'indiquer qu'on peut utiliser cette connexion HTTP/2 pour cette origine. Elle n'authentifie pas le serveur. Pour cela, il faut toujours compter sur le certificat (cf. section 4 du RFC).

En parlant de sécurité, notez que le RFC 7540, section 9.1.1 obligeait le client HTTP/2 à vérifier le DNS et le nom dans le certificat, avant d'ajouter une origine. Notre nouveau RFC est plus laxiste, on ne vérifie que le certificat quand on reçoit une nouvelle origine dans une trame ORIGIN envoyée sur HTTPS (cela avait suscité des réactions diverses lors de la discussion à l'IETF). Cela veut dire qu'un méchant qui a pu avoir un certificat valable pour un nom, via une des nombreuses AC du magasin, n'a plus besoin de faire une attaque de l'Homme du Milieu (avec, par exemple, un détournement DNS). Il lui suffit, lorsqu'un autre nom qu'il contrôle est visité, d'envoyer une trame ORIGIN et de présenter le certificat. Pour éviter cela, le RFC conseille au client de vérifier le certificat plus soigneusement, par exemple avec les journaux publics du RFC 6962, ou bien avec une réponse OCSP (RFC 6960 montrant que le certificat n'a pas été révoqué, en espérant qu'un certificat « pirate » sera détecté et révoqué…)

Les développeurs regarderont avec intérêt l'annexe B, qui donne des conseils pratiques. Par exemple, si un serveur a une très longue liste d'origines possibles, il n'est pas forcément bon de l'envoyer dès le début de la connexion, au moment où la latence est critique. Il vaut mieux envoyer une liste réduite, et attendre un moment où la connexion est tranquille pour envoyer la liste complète. (La liste des origines, dans une trame ORIGIN, ne s'ajoute pas aux origines précédentes, elle les remplace. Pour retirer une origine, on envoie une nouvelle liste, sans cette origine, ou bien on compte sur les 421. Ce point avait suscité beaucoup de discussions au sein du groupe de travail.)

Pour l'instant, la gestion de ce nouveau type de trames ne semble se trouver que dans Firefox, et n'est dans aucun serveur, mais des programmeurs ont annoncé qu'ils allaient s'y mettre.


Téléchargez le RFC 8336


L'article seul

RFC 8310: Usage Profiles for DNS over TLS and DNS over DTLS

Date de publication du RFC : Mars 2018
Auteur(s) du RFC : S. Dickinson (Sinodun), D. Gillmor (ACLU), T. Reddy (McAfee)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF dprive
Première rédaction de cet article le 22 mars 2018


Afin de mieux protéger la vie privée des utilisateurs du DNS, le RFC 7858 normalise comment faire du DNS sur TLS, le chiffrement empêchant la lecture des requêtes et réponses DNS. Mais le chiffrement sans authentification n'a qu'un intérêt limité. Notamment, il ne protège pas contre un attaquant actif, qui joue les hommes du milieu. Le RFC 7858 ne proposait qu'un seul mécanisme d'authentification, peu pratique, les clés publiques configurées statiquement dans le client DNS. Ce nouveau RFC décrit d'autres mécanismes d'authentification, classés selon deux profils, un Strict (sécurité maximum) et un Opportuniste (disponibilité maximum).

Le problème de la protection de la vie privée quand on utilise le DNS est décrit dans le RFC 7626. Les solutions, comme toujours quand il s'agit de vie privée, se répartissent en deux catégories, la minimisation des données (RFC 7816) et le chiffrement (RFC 7858 et RFC 8094). Le chiffrement protège bien contre un attaquant purement passif. Mais si celui qui veut écouter les échanges DNS est capable de lancer des attaques actives (ARP spoofing, par exemple), le chiffrement ne suffit pas, il faut le doubler d'une authentification du serveur. Par exemple, en mars 2014, en Turquie, l'attaquant (le gouvernement) a pu détourner le trafic avec Google Public DNS. Même si Google Public DNS avait permis le chiffrement, il n'aurait pas servi, lors de cette attaque active. Sans l'authentification, on risque de parler en chiffré… à l'attaquant.

Le problème de l'authentification, c'est que si elle échoue, que faut-il faire ? Renoncer à envoyer des requêtes DNS ? Cela revient à se couper d'Internet. Notre nouveau RFC, considérant qu'il n'y a pas une solution qui conviendra à tous les cas, propose deux profils :

  • Le profil strict privilégie la confidentialité. Si on ne peut pas chiffrer et authentifier, on renonce.
  • Le profil opportuniste privilégie le fonctionnement du DNS. Si on ne peut pas authentifier, tant pis, on chiffre sans authentifier, mais, au moins, on a du DNS.

Notez bien qu'un profil spécifie des propriétés, une fin et pas un moyen. Un profil est défini par ces propriétés, qu'on implémente ensuite avec des mécanismes, décrits en section 6. Le RFC 7858 spécifiait déjà, dans sa section 4.2, un mécanisme d'authentification, fondé sur la connaissance préalable, par le client DNS, de la clé publique du serveur (SPKI, pour Subject Public Key Info, une solution analogue à celle du RFC 7469 pour HTTP). Mais beaucoup de détails manquaient. Ce nouveau RFC 8310 :

  • Décrit comment le client est censé obtenir les informations nécessaires à l'authentification,
  • Quelles lettres de créance peut présenter le serveur pour s'authentifier,
  • Et comment le client peut les vérifier.

À propos de ces « informations nécessaires à l'authentification », il est temps d'introduire un acronyme important (section 2 du RFC), ADN (Authentication Domain Name), le nom du serveur qu'on veut authentifier. Par exemple, pour Quad9, ce sera dns.quad9.net. Autres termes importants :

  • Ensemble de clés (SPKI pinset), un ensemble de clés cryptographiques (ou plutôt de condensats de clés),
  • Identificateur de référence (reference identifier), l'identificateur utilisé pour les vérifications (cf. RFC 6125).
  • Lettres de créance (credentials), les informations du serveur qui lui servent à s'authentifier, certificat PKIX, enregistrement TLSA (RFC 6698) ou ensemble de clés.

Note importante, la section 3 du RFC pointe le fait que les mécanismes d'authentification présentés ici ne traitent que l'authentification d'un résolveur DNS par son client. L'éventuelle future authentification d'un serveur faisant autorité par le résolveur est hors-sujet, tout comme l'authentification du client DNS par le serveur. Sont également exclus les idées d'authentifier le nom de l'organisation qui gère le serveur ou son pays : on authentifie uniquement l'ADN, « cette machine est bien dns-resolver.yeti.eu.org », c'est tout.

La section 5 présente les deux profils normalisés. Un profil est une politique choisie par le client DNS, exprimant ses exigences, et les compromis qu'il est éventuellement prêt à accepter si nécessaire. Un profil n'est pas un mécanisme d'authentification, ceux-ci sont dans la section suivante, la section 6. La section 5 présente deux profils :

  • Le profil strict, où le client exige chiffrement avec le serveur DNS et authentification du serveur. Si cela ne peut pas être fait, le profil strict renonce à utiliser le DNS, plutôt qu'à prendre des risques d'être surveillé. Le choix de ce profil protège à la fois contre les attaques passives et contre les attaques actives.
  • Le profil opportuniste, où le client tente de chiffrer et d'authentifier, mais est prêt à continuer quand même si ça échoue (cf. RFC 7435, sur ce concept de sécurité opportuniste). Si le serveur DNS permet le chiffrement, l'utilisateur de ce profil est protégé contre une attaque passive, mais pas contre une attaque active. Si le serveur ne permet pas le chiffrement, l'utilisateur risque même de voir son trafic DNS passer en clair.

Les discussions à l'IETF (par exemple pendant la réunion de Séoul en novembre 2016) avaient été vives, notamment sur l'utilité d'avoir un profil strict, qui peut mener à ne plus avoir de résolution DNS du tout, ce qui n'encouragerait pas son usage.

Une petite nuance s'impose ici : pour les deux profils, il faudra, dans certains cas, effectuer une requête DNS au tout début pour trouver certaines informations nécessaires pour se connecter au serveur DNS (par exemple son adresse IP si on n'a que son nom). Cette « méta-requête » peut se faire en clair, et non protégée contre l'écoute, même dans le cas du profil strict. Autrement, le déploiement de ce profil serait très difficile (il faudrait avoir toutes les informations stockées en dur dans le client).

Le profil strict peut être complètement inutilisable si les requêtes DNS sont interceptées et redirigées, par exemple dans le cas d'un portail captif. Dans ce cas, la seule solution est d'avoir un mode « connexion » pendant lequel on n'essaie pas de protéger la confidentialité des requêtes DNS, le temps de passer le portail captif, avant de passer en mode « accès Internet ». C'est ce que fait DNSSEC-trigger (cf. section 6.6).

Le tableau 1 du RFC résume les possibilités de ces deux profils, face à un attaquant actif et à un passif. Dans tous les cas, le profil strict donnera une connexion DNS chiffrée et authentifiée, ou bien pas de connexion du tout. Dans le meilleur cas, le profil opportuniste donnera la même chose que le strict (connexion chiffrée et authentifiée). Si le serveur est mal configuré ou si le client n'a pas les informations nécessaires pour authentifier, ou encore si un Homme du Milieu intervient, la session ne sera que chiffrée, et, dans le pire des cas, le profil opportuniste donnera une connexion en clair. On aurait pu envisager d'autres profils (par exemple un qui impose le chiffrement, mais pas l'authentification) mais le groupe de travail à l'IETF a estimé qu'ils n'auraient pas eu un grand intérêt, pour la complexité qu'ils auraient apporté.

Un mot sur la détection des problèmes. Le profil opportuniste peut permettre la détection d'un problème, même si le client continue ensuite malgré les risques. Par exemple, si un résolveur DNS acceptait DNS-sur-TLS avant, que le client avait enregistré cette information, mais que, ce matin, les connexions vers le port 853 sont refusées, avec le profil opportuniste, le client va quand même continuer sur le port 53 (en clair, donc) mais peut noter qu'il y a un problème. Il peut même (mais ce n'est pas une obligation) prévenir l'utilisateur. Cette possibilité de détection est le « D » dans le tableau 1, et est détaillée dans la section 6.5. La détection permet d'éventuellement prévenir l'utilisateur d'une attaque potentielle, mais elle est aussi utile pour le déboguage.

Évidemment, seul le profil strict protège réellement l'utilisateur contre l'écoute et toute mise en œuvre de DNS-sur-TLS devrait donc permettre au moins ce profil. Le profil opportuniste est là par réalisme : parfois, il vaut mieux une connexion DNS écoutée que pas de DNS du tout.

Les deux profils vont nécessiter un peu de configuration (le nom ou l'adresse du résolveur) mais le profil strict en nécessite davantage (par exemple la clé du résolveur).

Maintenant qu'on a bien décrit les profils, quels sont les mécanismes d'authentification disponibles ? La section 6 les décrit rapidement, et le tableau 2 les résume, il y en a six en tout, caractérisés par l'information de configuration nécessaire côté client (ils seront détaillés en section 8) :

  • Adresse IP du résolveur + clé du résolveur (SPKI, Subject Public Key Info). C'est celui qui était présenté dans la section 4.2 du RFC 7858, et qui est illustré dans mon article sur la supervision de résolveurs DNS-sur-TLS. Ce mécanisme est pénible à gérer (il faut par exemple tenir compte des éventuels changements de clé) mais c'est celui qui minimise la fuite d'information : l'éventuel surveillant n'apprendra que l'ADN (dans le SNI de la connexion TLS). En prime, il permet d'utiliser les clés nues du RFC 7250 (cf. section 9 du RFC).
  • ADN (nom de domaine du résolveur DNS-sur-TLS) et adresse IP du résolveur. On peut alors authentifier avec le certificat PKIX, comme on le fait souvent avec TLS (cf. section 8 du RFC, RFC 5280 et RFC 6125). L'identificateur à vérifier est l'ADN, qui doit se trouver dans le certificat, comme subjectAltName.
  • ADN seul. La configuration est plus simple et plus stable mais les méta-requêtes (obtenir l'adresse IP du résolveur à partir de son ADN) ne sont pas protégées et peuvent être écoutées. Si on n'utilise pas DNSSEC, on peut même se faire détourner vers un faux serveur (la vérification du certificat le détecterait, si on pouvait faire confiance à toutes les AC situées dans le magasin).
  • DHCP. Aucune configuration (c'est bien le but de DHCP) mais deux problèmes bloquants : il n'existe actuellement pas d'option DHCP pour transmettre cette information (même pas de projet) et DHCP lui-même n'est pas sûr.
  • DANE (RFC 6698). On peut authentifier le certificat du résolveur, non pas avec le fragile système des AC X.509, mais avec DANE. L'enregistrement TLSA devra être en _853._tcp.ADN. Cela nécessite un client capable de faire de la validation DNSSEC (à l'heure actuelle, le résolveur sur la machine cliente est en général un logiciel minimal, incapable de valider). Et les requêtes DANE (demande de l'enregistrement TLSA) peuvent passer en clair.
  • DANE avec une extension TLS. Cette extension (actuellement non encore décrite dans un RFC, cf. le projet draft-ietf-tls-dnssec-chain-extension) permet au serveur DNS-sur-TLS d'envoyer les enregistrements DNS et DNSSEC dans la session TLS elle-même. Plus besoin de méta-requêtes et donc plus de fuites d'information.

Cela fait beaucoup de mécanismes d'authentification ! Comment se combinent-ils ? Lesquels essayer et que faire s'ils donnent des résultats différents ? La méthode recommandée, si on a un ADN et une clé, est de tester les deux et d'exiger que les deux fonctionnent.

On a parlé à plusieurs reprises de l'ADN (Authentication Domain Name). Mais comment on obtient son ADN ? La section 7 du RFC détaille les sources d'ADN. La première est évidemment le cas où l'ADN est configuré manuellement. On pourrait imaginer, sur Unix, un /etc/resolv.conf avec une nouvelle syntaxe :

nameserver 2001:db8:53::1 adn resolver.example.net
	

Ici, on a configuré manuellement l'adresse IP et le nom (l'ADN) du résolveur. Cela convient au cas de résolveurs publics comme Quad9. Mais on pourrait imaginer des cas où seul l'ADN serait configuré quelque part, le résolveur dans /etc/resolv.conf étant rempli par DHCP, et n'étant utilisé que pour les méta-requêtes. Par exemple un (mythique, pour l'instant) /etc/tls-resolver.conf :

adn resolver.example.net
# IP address will be found via the "DHCP" DNS resolver, and checked
# with DNSSEC and/or TLS authentication
	

Troisième possibilité, l'ADN et l'adresse IP pourraient être découverts dynamiquement. Il n'existe à l'heure actuelle aucune méthode normalisée pour cela. Si on veut utiliser le profil strict, cette future méthode normalisée devra être raisonnablement sécurisée, ce qui n'est typiquement pas le cas de DHCP. On peut toujours normaliser une nouvelle option DHCP pour indiquer l'ADN mais elle ne serait, dans l'état actuel des choses, utilisable qu'avec le profil opportuniste. Bon, si vous voulez vous lancer dans ce travail, lisez bien la section 8 du RFC 7227 et la section 23 du RFC 3315 avant.

La section 11 du RFC décrit les mesures à mettre en œuvre contre deux attaques qui pourraient affaiblir la confidentialité, même si on chiffre. La première est l'analyse des tailles des requêtes et des réponses. L'accès au DNS étant public, un espion peut facilement récolter l'information sur la taille des réponses et, puisque TLS ne fait rien pour dissimuler cette taille, déduire les questions à partir des tailles. La solution recommandée contre l'attaque est le remplissage, décrit dans le RFC 7830.

Seconde attaque possible, un résolveur peut inclure l'adresse IP de son client dans ses requêtes au serveur faisant autorité (RFC 7871). Cela ne révèle pas le contenu des requêtes et des réponses, mais c'est quand même dommage pour la vie privée. Le client DNS-sur-TLS doit donc penser à mettre l'option indiquant qu'il ne veut pas qu'on fasse cela (RFC 7871, section 7.1.2).

Enfin, l'annexe A de notre RFC rappelle les dures réalités de l'Internet d'aujourd'hui : même si votre résolveur favori permet DNS-sur-TLS (c'est le cas par exemple de Quad9), le port 853 peut être bloqué par un pare-feu fasciste. Le client DNS-sur-TLS a donc intérêt à mémoriser quels résolveurs permettent DNS-sur-TLS, et depuis quels réseaux.

Pour l'instant, les nouveaux mécanismes d'authentification, et la possibilité de configurer le profil souhaité, ne semblent pas encore présents dans les logiciels, il va falloir patienter (ou programmer soi-même).

Merci à Willem Toorop pour son aide.


Téléchargez le RFC 8310


L'article seul

RFC 8308: Extension Negotiation in the Secure Shell (SSH) Protocol

Date de publication du RFC : Mars 2018
Auteur(s) du RFC : D. Bider (Bitvise Limited)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF curdle
Première rédaction de cet article le 21 mars 2018
Dernière mise à jour le 28 mars 2018


Le protocole SSH n'avait pas de mécanisme propre pour négocier des extensions au protocole de base (comme celle du RFC 4335). En outre, une partie de la négociation, par exemple des algorithmes cryptographiques, se déroulait avant le début du chiffrement et n'était donc pas protégée. Ce nouveau RFC ajoute à SSH un mécanisme pour négocier les extensions après l'échange de clés et le début de la communication sécurisée, une fois que tout est confidentiel.

Un mécanisme de négociation pour un protocole cryptographique est toujours délicat (comme TLS s'en est aperçu à plusieurs reprises). Si on n'en a pas, le client et le serveur perdent beaucoup de temps à faire des essais/erreurs « tiens, il vient de déconnecter brusquement, c'est peut-être qu'il n'aime pas SHA-512, réessayons avec SHA-1 ». Et ces deux mécanismes (négociation explicite et essai/erreur) ouvrent une nouvelle voie d'attaque, celle des attaques par repli, où l'Homme du Milieu va essayer de forcer les deux parties à utiliser des algorithmes de qualité inférieure. (La seule protection serait de ne pas discuter, de choisir des algorithmes forts et de refuser tout repli. En sécurité, ça peut aider d'être obtus.)

Notez aussi que la méthode essais/erreurs a un danger spécifique, car bien des machines SSH mettent en œuvre des mécanismes de limitation du trafic, voire de mise en liste noire, si la machine en face fait trop d'essais, ceci afin d'empêcher des attaques par force brute. D'où l'intérêt d'un vrai mécanisme de négociation (qui peut en outre permettre de détecter certaines manipulations par l'Homme du Milieu).

Vue par tshark, voici le début d'une négociation SSH, le message SSH_MSG_KEXINIT, normalisé dans le RFC 4253, section 7.1 :

SSH Protocol
    SSH Version 2
        Packet Length: 1332
        Padding Length: 5
        Key Exchange
            Message Code: Key Exchange Init (20)
            Algorithms
                Cookie: 139228cb5cfbf6c97d6b74f6ae99453d
                kex_algorithms length: 196
                kex_algorithms string: curve25519-sha256@libssh.org,ecdh-sha2-nistp256,ecdh-sha2-nistp384,ecdh-sha2-nistp521,diffie-hellman-group-exchange-sha256,diffie-hellman-group-exchange-sha1,diffie-hellman-group14-sha1,ext-info-c
                server_host_key_algorithms length: 290
                server_host_key_algorithms string [truncated]: ecdsa-sha2-nistp256-cert-v01@openssh.com,ecdsa-sha2-nistp384-cert-v01@openssh.com,ecdsa-sha2-nistp521-cert-v01@openssh.com,ssh-ed25519-cert-v01@openssh.com,ssh-rsa-cert-v01@openssh.com,ecdsa-s
                encryption_algorithms_client_to_server length: 150
                encryption_algorithms_client_to_server string: chacha20-poly1305@openssh.com,aes128-ctr,aes192-ctr,aes256-ctr,aes128-gcm@openssh.com,aes256-gcm@openssh.com,aes128-cbc,aes192-cbc,aes256-cbc,3des-cbc
                encryption_algorithms_server_to_client length: 150
                encryption_algorithms_server_to_client string: chacha20-poly1305@openssh.com,aes128-ctr,aes192-ctr,aes256-ctr,aes128-gcm@openssh.com,aes256-gcm@openssh.com,aes128-cbc,aes192-cbc,aes256-cbc,3des-cbc
                mac_algorithms_client_to_server length: 213
                mac_algorithms_client_to_server string [truncated]: umac-64-etm@openssh.com,umac-128-etm@openssh.com,hmac-sha2-256-etm@openssh.com,hmac-sha2-512-etm@openssh.com,hmac-sha1-etm@openssh.com,umac-64@openssh.com,umac-128@openssh.com,hmac-sha2-2
                mac_algorithms_server_to_client length: 213
                mac_algorithms_server_to_client string [truncated]: umac-64-etm@openssh.com,umac-128-etm@openssh.com,hmac-sha2-256-etm@openssh.com,hmac-sha2-512-etm@openssh.com,hmac-sha1-etm@openssh.com,umac-64@openssh.com,umac-128@openssh.com,hmac-sha2-2
                compression_algorithms_client_to_server length: 26
                compression_algorithms_client_to_server string: none,zlib@openssh.com,zlib
                compression_algorithms_server_to_client length: 26
                compression_algorithms_server_to_client string: none,zlib@openssh.com,zlib
                languages_client_to_server length: 0
                languages_client_to_server string: [Empty]
                languages_server_to_client length: 0
                languages_server_to_client string: [Empty]
                KEX First Packet Follows: 0
                Reserved: 00000000
            Padding String: 0000000000
    

Le message était en clair (c'est pour cela que tshark a pu le décoder). L'autre machine envoie un message équivalent. Suite à cet échange, les deux machines sauront quels algorithmes sont disponibles.

Notre RFC 8308 (section 2.1) ajoute à ce message le nouveau mécanisme d'extension. Pour préserver la compatibilité avec les anciennes mises en œuvre de SSH, et comme il n'y a pas de place « propre » disponible dans le message, le nouveau mécanisme se place dans la liste des algorithmes cryptographiques (champ kex_algorithms, celui qui commence par curve25519-sha256@libssh.org,ecdh-sha2-nistp256…). On ajoute à cette liste ext-info-c si on est client et ext-info-s si on est serveur. (Le nom est différent dans chaque direction, pour éviter que les deux parties ne se disent « cool, cet algorithme est commun, utilisons-le ».) Vous pouvez donc savoir si votre SSH gère le nouveau mécanisme en capturant ce premier paquet SSH et en examinant la liste des algorithmes d'échange de clé. (C'était le cas ici, avec OpenSSH 7.2. Vous l'aviez repéré ?)

Une fois qu'on a proposé à son pair d'utiliser le nouveau mécanisme de ce RFC 8308, on peut s'attendre, si le pair est d'accord, à recevoir un message SSH d'un nouveau type, SSH_MSG_EXT_INFO, qui sera, lui, chiffré. Il contient la liste des extensions gérées avec ce mécanisme. Notez qu'il peut être envoyé plusieurs fois, par exemple avant et après l'authentification du client, pour le cas d'un serveur timide qui ne voulait pas révéler sa liste d'extensions avant l'authentification. Ce nouveau type de message figure désormais dans le registre des types de message, avec le numéro 7.

La section 3 définit les quatre extensions actuelles (un registre accueillera les extensions futures) :

  • L'extension server-sig-algs donne la liste des algorithmes de signature acceptés par le serveur.
  • delay-compression indique les algorithmes de compression acceptés. Il y en a deux, un du client vers le serveur et un en sens inverse. Ils étaient déjà indiqués dans le message SSH_MSG_KEXINIT, dans les champs compression_algorithms_client_to_server et compression_algorithms_server_to_client mais, cette fois, ils sont transmis dans un canal sécurisé (confidentiel et authentifié).
  • no-flow-control, dont le nom indique bien la fonction.
  • elevation sert aux systèmes d'exploitation qui ont un mécanisme d'élévation des privilèges (c'est le cas de Windows, comme documenté dans le blog de Microsoft).

Les futures extensions, après ces quatre-là, nécessiteront un examen par l'IETF, via un RFC IETF (cf. RFC 8126, politique « IETF review »). Elle seront placées dans le registre des extensions.

Quelques petits problèmes de déploiement et d'incompatibilité ont été notés avec ce nouveau mécanisme d'extensions. Par exemple OpenSSH 7.3 et 7.4 gérait l'extension server-sig-algs mais n'envoyait pas la liste complète des algorithmes acceptés. Un client qui considérait cette liste comme ferme et définitive pouvait donc renoncer à utiliser certains algorithmes qui auraient pourtant marché. Voir ce message pour une explication détaillée.

Autre gag, les valeurs des extensions peuvent contenir des octets nuls et un logiciel maladroit qui les lirait comme si c'était des chaînes de caractères en C aurait des problèmes. C'est justement ce qui est arrivé à OpenSSH, jusqu'à la version 7.5 incluse, ce qui cassait brutalement la connexion. Le RFC conseille de tester la version du pair, et de ne pas utiliser les extensions en cause si on parle à un OpenSSH ≤ 7.5.

Aujourd'hui, ce mécanisme d'extension est mis en œuvre dans OpenSSH, Bitvise SSH, AsyncSSH et SmartFTP. (Cf. ce tableau de comparaison, mais qui n'est pas forcément à jour.)

Merci à Manuel Pégourié-Gonnard pour avoir détecté une erreur dans la première version.


Téléchargez le RFC 8308


L'article seul

RFC 8332: Use of RSA Keys with SHA-256 and SHA-512 in the Secure Shell (SSH) Protocol

Date de publication du RFC : Mars 2018
Auteur(s) du RFC : D. Bider (Bitvise)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF curdle
Première rédaction de cet article le 21 mars 2018


Les RFC normalisant le protocole SSH mentionnaient la possibilité pour le serveur d'avoir une clé publique RSA, mais uniquement avec l'algorithme de condensation SHA-1. Celui-ci a subi plusieurs attaques et n'est plus du tout conseillé aujourd'hui. Ce nouveau RFC est la description officielle de l'utilisation de RSA avec SHA-2 dans SSH.

Le RFC officiel du protocole SSH, le RFC 4253, définit l'algorithme ssh-rsa comme utilisant the SHA-1 hash pour la signature et la vérification. Ce n'est plus cohérent avec ce qu'on sait aujourd'hui des faiblesses de SHA-1. Par exemple, le NIST (dont les règles s'imposent aux organismes gouvernementaux états-uniens), interdit SHA-1 (voir aussi la section 5.1 du RFC).

(Petit point au passage, dans SSH, le format de la clé ne désigne que la clé elle-même, alors que l'algorithme désigne un format de clé et des procédures de signature et de vérification, qui impliquent un algorithme de condensation. Ainsi, ssh-keygen -t rsa va générer une clé RSA, indépendamment de l'algorithme qui sera utilisé lors d'une session SSH. Le registre IANA indique désormais séparement le format et l'algorithme.)

Notre nouveau RFC définit donc deux nouveaux algorithmes :

  • rsa-sha2-256, qui utilise SHA-256 pour la condensation, et dont la mise en œuvre est recommandée pour tout programme ayant SSH,
  • et rsa-sha2-512, qui utilise SHA-512 et dont la mise en œuvre est facultative.

Les deux algorithmes sont maintenant dans le registre IANA. Le format, lui, ne change pas, et est toujours qualifié de ssh-rsa (RFC 4253, section 3.) Il n'est donc pas nécessaire de changer ses clés RSA. (Si vous utilisez RSA : SSH permet d'autres algorithmes de cryptographie asymétrique, voir également la section 5.1 du RFC.)

Les deux « nouveaux » (ils sont déjà présents dans plusieurs programmes SSH) algorithmes peuvent être utilisés aussi bien pour l'authentification du client que pour celle du serveur. Ici, par exemple, un serveur OpenSSH version 7.6p1 annonce les algorithme qu'il connait (section 3.1 de notre RFC), affichés par un client OpenSSH utilisant l'option -v :


debug1: kex_input_ext_info: server-sig-algs=<ssh-ed25519,ssh-rsa,rsa-sha2-256,rsa-sha2-512,ssh-dss,ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521>

    

On y voit la présence des deux nouveaux algorithmes. ssh-rsa est celui du RFC 4253, avec SHA-1 (non explicitement indiqué).

En parlant d'OpenSSH, la version 7.2 avait une bogue (corrigée en 7.2p2), qui faisait que la signature était étiquetée ssh-rsa quand elle aurait dû l'être avec rsa-sha2-256 ou rsa-sha2-512. Pour compenser cette bogue, le RFC autorise les programmes à accepter ces signatures quand même.

Autre petit piège pratique (et qui a suscité les discussions les plus vives dans le groupe de travail), certains serveurs SSH « punissent » les clients qui essaient de s'authentifier avec des algorithmes que le serveur ne sait pas gèrer, pour diminuer l'efficacité d'éventuelles attaques par repli. Pour éviter d'être pénalisé (serveur qui raccroche brutalement, voire qui vous met en liste noire), le RFC recommande que les serveurs déploient le protocole qui permet de négocier des extensions, protocole normalisé dans le RFC 8308. (L'extension intéressante est server-sig-algs.) Le client prudent peut éviter d'essayer les nouveaux algorithmes utilisant SHA-2, si le serveur n'annonce pas cette extension. L'ancien algorithme, utilisant SHA-1, devrait normalement être abandonné au fur et à mesure que tout le monde migre.

Les nouveaux algorithmes de ce RFC sont présents dans :

Vous pouvez aussi regarder le tableau de comparaison des versions de SSH. Voici encore un ssh -v vers un serveur dont la clé de machine est RSA et qui utilise l'algorithme RSA-avec-SHA512 :

...
debug1: kex: host key algorithm: rsa-sha2-512
...
debug1: Server host key: ssh-rsa SHA256:yiol3GPr1dgVo/SNXPvtFqftLw4UF+nL+ECa1yXAtG0
...
   

Par comparaison avec les SSH récents, voici un ssh -v OpenSSH vers un serveur un peu vieux :

    

debug1: kex_input_ext_info: server-sig-algs=<ssh-ed25519,ssh-rsa,ssh-dss,ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521>

On voit que les nouveaux algorithmes manquent (pour RSA ; SHA-2 est utilisable pour ECDSA). Et pour sa clé de machine :

...
debug1: kex: host key algorithm: ssh-rsa
...
debug1: Server host key: ssh-rsa SHA256:a6cLkwFRGuEorbmN0oRjvKrXELhIVXdgHRCcbQOM2w8
  

Le serveur utilise le vieil algorithme, ssh-rsa, ce qui veut dire SHA-1 (le SHA256 qui apparait a été généré par le client).


Téléchargez le RFC 8332


L'article seul

RFC 8358: Update to Digital Signatures on Internet-Draft Documents

Date de publication du RFC : Mars 2018
Auteur(s) du RFC : R. Housley (Vigil Security)
Pour information
Première rédaction de cet article le 13 mars 2018
Dernière mise à jour le 5 avril 2018


Les Internet-Drafts sont signés suivant les règles du RFC 5485, afin qu'une lectrice ou un lecteur puissent vérifier qu'un Internet-Draft n'a pas été modifié en cours de route. Ce nouveau RFC modifie légèrement le RFC 5485 sur un seul point : la signature d'Internet-Drafts qui sont écrits en Unicode.

En effet, depuis le RFC 7997, les RFC ne sont plus forcément en ASCII, ils peuvent intégrer des caractères Unicode. Le premier RFC publié avec ces caractères a été le RFC 8187, en septembre 2017. Bientôt, cela sera également possible pour les Internet-Drafts. Cela affecte forcément les règles de signature, d'où cette légère mise à jour.

Le RFC 5485 normalisait l'utilisation de CMS (RFC 5652) pour le format des signatures. Vous pouvez télécharger ces signatures sur n'importe lequel des sites miroirs. CMS utilise ASN.1, avec l'obligation d'utiliser l'encodage DER, le seul encodage d'ASN.1 qui ne soit pas ambigu (une seule façon de représenter un texte).

Les Internet-Drafts sont actuellement tous en texte brut, limité à ASCII. Mais cela ne va pas durer (RFC 7990). Les signatures des Internet-Drafts sont détachées de l'Internet-Draft (section 2 de notre RFC), dans un fichier portant le même nom auquel on ajoute l'extension .p7s (RFC 5751). Par exemple avec wget, pour récupérer un Internet-Draft et sa signature :

% wget  https://www.ietf.org/id/draft-bortzmeyer-dname-root-05.txt
% wget  https://www.ietf.org/id/draft-bortzmeyer-dname-root-05.txt.p7s

(Ne le faites pas avec un Internet-Draft trop récent, les signatures n'apparaissent qu'au bout de quelques jours, la clé privée n'est pas en ligne.)

La signature est au format CMS (RFC 5652). Son adaptation aux RFC et Internet-Drafts est normalisée dans le RFC 5485. Le champ SignedData.SignerInfo.EncapsulatedContentInfo.eContentType du CMS identifie le type d'Internet-Draft signé. Les valeurs possibles figurent dans un registre IANA. Il y avait déjà des valeurs comme id-ct-asciiTextWithCRLF qui identifiait l'Internet-Draft classique en texte brut en ASCII, notre RFC ajoute (section 5) id-ct-utf8TextWithCRLF (texte brut en UTF-8), id-ct-htmlWithCRLF (HTML) et id-ct-epub (EPUB). Chacun de ces types a un OID, par exemple le texte brut en UTF-8 sera 1.2.840.113549.1.9.16.1.37.

Maintenant, passons à un morceau délicat, la canonicalisation des Internet-Drafts. Signer nécessite de canonicaliser, autrement, deux textes identiques aux yeux de la lectrice pourraient avoir des signatures différentes. Pour le texte brut en ASCII, le principal problème est celui des fins de ligne, qui peuvent être représentées différemment selon le système d'exploitation. Nous utilisons donc la canonicalisation traditionnelle des fichiers texte sur l'Internet, celle de FTP : le saut de ligne est représenté par deux caractères, CR et LF. Cette forme est souvent connue sous le nom de NVT (Network Virtual Terminal) mais, bien que très ancienne, n'avait été formellement décrite qu'en 2008, dans l'annexe B du RFC 5198, qui traitait pourtant un autre sujet.

Pour les Internet-Drafts au format XML, notre RFC renvoie simplement au W3C et à sa norme XML, section 2.11 de la cinquième édition, qui dit qu'il faut translating both the two-character sequence #xD #xA and any #xD that is not followed by #xA to a single #xA character. La canonicalisation XML (telle que faite par xmllint --c14n) n'est pas prévue.

Les autres formats ne subissent aucune opération particulière de canonicalisation. Un fichier EPUB, par exemple, est considéré comme une simple suite d'octets. On notera que le texte brut en Unicode ne subit pas de normalisation Unicode. C'est sans doute à cause du fait que le RFC 7997, dans sa section 4, considère que c'est hors-sujet. (Ce qui m'a toujours semblé une drôle d'idée, d'autant plus qu'il existe une norme Internet sur la canonicalisation du texte brut en Unicode, RFC 5198, qui impose la normalisation NFC.)

À l'heure actuelle, les Internet-Drafts sont signés, les outils doivent encore être adaptés aux nouvelles règles de ce RFC, mais elles sont simples et ça ne devrait pas être trop dur. Pour vérifier les signatures, la procédure (qui est documentée) consiste d'abord à installer le logiciel de canonicalisation :

% wget  https://www.ietf.org/id-info/canon.c    
% make canon
    

Puis à télécharger les certificats racine :

% wget  https://www.ietf.org/id-info/verifybundle.pem
    

Vous pouvez examiner ce groupe de certificats avec :

% openssl crl2pkcs7 -nocrl -certfile verifybundle.pem  | openssl pkcs7 -print_certs -text
    

Téléchargez ensuite des Internet-Drafts par exemple en https://www.ietf.org/id/ :

% wget      https://www.ietf.org/id/draft-ietf-isis-sr-yang-03.txt 
% wget         https://www.ietf.org/id/draft-ietf-isis-sr-yang-03.txt.p7s

On doit ensuite canonicaliser l'Internet-Draft :

% ./canon draft-ietf-isis-sr-yang-03.txt draft-ietf-isis-sr-yang-03.txt.canon

On peut alors vérifier les signatures :

% openssl cms -binary -verify -CAfile verifybundle.pem -content draft-ietf-isis-sr-yang-03.txt.canon -inform DER -in draft-ietf-isis-sr-yang-03.txt.p7s -out /dev/null
Verification successful

Si vous avez à la place :

Verification failure
139818719196416:error:2E09A09E:CMS routines:CMS_SignerInfo_verify_content:verification failure:../crypto/cms/cms_sd.c:819:
139818719196416:error:2E09D06D:CMS routines:CMS_verify:content verify error:../crypto/cms/cms_smime.c:393:
 

c'est sans doute que vous avez oublié l'option -binary.

Si vous trouvez la procédure compliquée, il y a un script qui automatise tout ça idsigcheck :

% ./idsigcheck --setup      
% ./idsigcheck draft-ietf-isis-sr-yang-03.txt
    

Si ça vous fait bad interpreter: /bin/bash^M, il faut recoder les sauts de ligne :

% dos2unix idsigcheck 
dos2unix: converting file idsigcheck to Unix format...
    

Ce script appelle OpenSSL mais pas avec les bonnes options à l'heure actuelle, vous risquez donc d'avoir la même erreur que ci-dessus.


Téléchargez le RFC 8358


L'article seul

Fiche de lecture : Bitcoin, la monnaie acéphale

Auteur(s) du livre : Adli Takkal Bataille, Jacques Favier
Éditeur : CNRS Éditions
978-2-271-11554-6
Publié en 2017
Première rédaction de cet article le 11 mars 2018


Le succès du Bitcoin puis, plus récemment, celui du concept de chaîne de blocs, ont entrainé l'apparition de nombreux ouvrages sur le sujet. Ce dernier livre a un point de vue résolument « pieds dans le plat », en démolissant pas mal de vaches sacrées de la littérature économique.

Bitcoin dérange, c'est sûr, et les attaques contre lui n'ont pas manqué. Il a été accusé d'être une « monnaie virtuelle » (comme si l'euro ou le dollar avaient plus de réalité), d'être une monnaie de la délinquance (comme si la majorité des transactions illégales n'était pas en dollars), d'être une pyramide de Ponzi (sans doute l'accusation la plus ridicule)… Ce livre va donc tenter de redresser la barre, avec talent, et sans prendre de gants.

Dès la page 17, les discours des ignorants anti-Bitcoin se font étriller : « Ponzi, en matière d'argent, est un peu le point Godwin de l'invective » De nombreux autres clichés vont être remis en cause dans ce livre, qui aime les phrases-choc et, la plupart du temps, parfaitement justes.

Même quand une idée reçue est répétée en boucle par beaucoup de messieurs sérieux, les auteurs n'hésitent pas à lui tordre le cou. Ils exécutent ainsi les chaînes privées (« à permission ») p. 56, sans aucun respect pour tous les consultants qui vendent des rapports expliquant que c'est l'avenir.

Bon, la légende de la pyramide de Ponzi et les chaînes privées étaient des cibles faciles, aisées à réfuter. Mais ce livre ne recule pas non plus devant les critiques plus sérieuses, comme le problème écologique que posent les calculs (la « preuve de travail ») nécessaires pour protéger la chaîne Bitcoin. De même, les problèmes parfois « violents » agitant la « communauté » Bitcoin sont largement exposés et remis dans le contexte. On trouve par exemple une bonne analyse de la question du « pouvoir des mineurs ».

Les auteurs sont très à l'aise aussi bien avec l'informatique qu'avec l'économie, mais dérapent parfois sur des sujets « vendeurs » mais sur lesquels ils manquent de sens critique, comme l'Internet des Objets ou le vote électronique. De même, la présentation de Namecoin est très sommaire, et comprend d'ailleurs une erreur amusante lorsqu'ils disent que le TLD utilisé pour les noms de domaine Namecoin est .name (c'est en fait .bit).

Malgré ces défauts, c'est un livre que je recommande très fortement. Son titre à lui seul résume la bonne connaissance du Bitcoin par les auteurs : des tas d'adjectifs ont été utilisés pour le Bitcoin (« virtuel », « cryptographique », « décentralisé »…) mais je trouve qu'aucun ne résume aussi bien le Bitcoin que celui qu'ils ont choisi, « acéphale ».


L'article seul

Ça y est, j'ai la fibre

Première rédaction de cet article le 7 mars 2018


Voilà, après des années de discussions et quelques essais ratés, je suis connecté à la maison avec une fibre optique via Free. C'est plus compliqué que ça n'en a l'air, notamment en raison de la multiplicité des acteurs, qui ne communiquent pas, ou guère.

L'immeuble est récent, avec un mur porteur pas évident à percer, mais, en théorie, il y avait des fourreaux pour passer la fibre. Mais il n'y avait pas de plan correct de ces fourreaux, il a fallu procéder par essai/erreur. On glisse l'aiguille dans les fourreaux. Si elle ressort, c'est que ça passe, on crie « c'est bon, je la vois », on y attache la fibre et on la fait passer. À noter que deux aiguilles ont été testées, l'une, trop rigide, n'allant pas assez loin. Il a fallu utiliser le fourreau du câble téléphonique en cuivre, le seul un peu libre, et il ne restait pas beaucoup de place. L'aiguille passait seule, mais pas quand elle tirait la fibre. Les techniciens de Free m'ont demandé « vous avez du liquide vaisselle ? » Je leur ai donné du Mir, ils ont enduit l'aiguille et la fibre avec… et c'est passé. On oublie souvent que les solutions de haute technologie ne sont pas forcément les meilleures.

J'ai été sympa, le fourreau où passait le câble TV inutilisé a été laissé intact, au cas où le locataire suivant veuille l'utiliser…

Après, il a fallu connecter en bas, dans le sous-sol. La fibre était bien là, illuminée par le laser installé dans l'appartement, mais était cassée. Un coup de soudure, pas mal de recâblage (elle n'était apparemment pas à l'endroit indiqué) et c'est reparti.

Dans l'appartement, la sortie en cuivre du boitier fourni par Free arrive directement dans la Freebox. Comme ma Freebox est simplement configurée en pont (mode bridge), j'aurais peut-être pu essayer de brancher le câble directement dans le routeur, un Turris Omnia. Mais je n'ai pas osé. Cela semble possible, mais pas forcément trivial. Il semble notamment que le trafic soit sur un VLAN (835 pour les données, et 836 pour la télévision, apparemment). D'après un témoignage sur proxad.free.ftth, il faut un media converter (comme le TP-Link MC220L) ou bien demander à Free de couper la négociation de vitesse.

Le passage de l'ADSL à la fibre entraine un changement d'adresses IP. En IPv4, le Turris apprend la nouvelle adresse automatiquement en DHCP, en IPv6, il faut refaire la configuration manuellement. L'adresse IPv4 ne semble pas partagée (en tout cas, je peux mettre des serveurs sur la Turris, ou sur des machines du réseau interne, et ils fonctionnent). Avantage, par rapport à l'ADSL, plus de tunnel, je peux utiliser une MTU normale.

Et pour finir, j'ai changé les user tags de ma sonde RIPE Atlas pour remplacer « ADSL » par « fibre ».


L'article seul

RFC 8326: Graceful BGP Session Shutdown

Date de publication du RFC : Mars 2018
Auteur(s) du RFC : P. Francois, B. Decraene (Orange), C. Pelsser (Strasbourg University), K. Patel (Arrcus), C. Filsfils (Cisco Systems)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF grow
Première rédaction de cet article le 7 mars 2018


Voici une nouvelle communauté BGP, GRACEFUL_SHUTDOWN, qui va permettre d'annoncer une route à son pair BGP, tout en l'avertissant que le lien par lequel elle passe va être bientôt coupé pour une maintenance prévue. Le pair pourra alors automatiquement limiter l'usage de cette route et chercher tout de suite des alternatives. Cela évitera les pertes de paquets qui se produisent quand on arrête un lien ou un routeur.

Le protocole BGP (RFC 4271) qui assure le routage entre les AS qui composent l'Internet permet aux routeurs d'échanger des informations entre eux « pour aller vers 2001:db8:bc9::/48, passe donc par moi ». Avec ces informations, chaque routeur calcule les routes à suivre pour chaque destination. Une fois que c'est fait, tout le monde se repose ? Non, parce qu'il y a tout le temps des changements. Certains peuvent être imprévus et accidentels (la fameuse pelleteuse), d'autres sont planifiés à l'avance : ce sont les opérations de maintenance « le 7 février à 2300 UTC, nous allons remplacer une line card du routeur, coupant toutes les sessions BGP de cette carte ». Voici par exemple un message reçu sur la liste de diffusion des opérateurs connectés au France-IX :

      
Date: Wed, 31 Jan 2018 15:57:34 +0000
From: Quelqu'un <quelquun@opérateur>
To: "paris@members.franceix.net" <paris@members.franceix.net>
Subject: [FranceIX members] [Paris] [OPÉRATEUR/ASXXXXX] - France-IX port  maintenance

Dear peers,

Tomorrow morning CEST, we will be conducting a maintenance that will
impact one of our connection to France-IX (IPs: x.y.z.t/2001:x:y:z::t).

All sessions will be shut down before and brought back up once the maintenance will be over.

Please note that our MAC address will change as the link will be migrated to a new router.

Cheers

    

Lorsqu'une telle opération est effectuée, le résultat est le même que pour une coupure imprévue : les sessions BGP sont coupées, les routeurs retirent les routes apprises via ces sessions, et vont chercher d'autres routes dans les annonces qu'ils ont reçues. Ils propagent ensuite ces changements à leurs voisins, jusqu'à ce que tout l'Internet soit au courant. Le problème est que cela prend du temps (quelques secondes au moins, des dizaines de secondes, parfois, à moins que les routeurs n'utilisent le RFC 7911 mais ce n'est pas toujours le cas). Et pendant ce temps, les paquets continuent à arriver à des routeurs qui ne savent plus les traiter (section 3 du RFC). Ces paquets seront jetés, et devront être réémis (pour le cas de TCP). Ce n'est pas satisfaisant. Bien sûr, quand la coupure est imprévue, il n'y a pas le choix. Mais quand elle est planifiée, on devrait pouvoir faire mieux, avertir les routeurs qu'ils devraient cesser d'utiliser cette route. C'est justement ce que permet la nouvelle communauté GRACEFUL_SHUTDOWN. (Les communautés BGP sont décrites dans le RFC 1997.) Elle s'utilise avant la coupure, indiquant aux pairs qu'ils devraient commencer le recalcul des routes, mais qu'ils peuvent continuer à utiliser les anciennes routes pendant ce temps. (Notez qu'un cahier des charges avait été établi pour ce problème, le RFC 6198. Et que ce projet d'une communauté pour les arrêts planifiés est ancien, au moins dix ans.)

Ce RFC décrit donc deux choses, la nouvelle communauté normalisée, GRACEFUL_SHUTDOWN (section 5), et la procédure à utiliser pour s'en servir proprement (section 4). L'idée est que les routes qui vont bientôt être coupées pour maintenance restent utilisées, mais avec une préférence locale très faible (la valeur 0 est recommandée, la plus petite valeur possible). La notion de préférence locale est décrite dans le RFC 4271, section 5.1.5. Comme son nom l'indique, elle est locale à un AS, et représente sa préférence (décidée unilatéralement) pour une route plutôt que pour une autre. Lors du choix d'une route par BGP, c'est le premier critère consulté.

Pour mettre en œuvre cette idée, chaque routeur au bord des AS (ASBR, pour Autonomous System Border Router) doit avoir une règle qui, lorsqu'une annonce de route arrive avec la communauté GRACEFUL_SHUTDOWN, applique une préférence locale de 0. Notez que cela peut se faire avec les routeurs actuels, aucun code nouveau n'est nécessaire, ce RFC ne décrit qu'une procédure. Une fois que cette règle est en place, tout le reste sera automatique, chez les pairs de l'AS qui coupe un lien ou un routeur.

Et l'AS qui procéde à une opération de maintenance, que doit-il faire ? Dans l'ordre :

  • Sur la·es session·s BGP qui va·ont être coupée·s, appliquer la communauté GRACEFUL_SHUTDOWN aux routes qu'on annonce (outbound policy),
  • Sur la·es session·s BGP qui va·ont être coupée·s, appliquer la communauté GRACEFUL_SHUTDOWN aux routes qu'on reçoit (inbound policy), et mettre leur préférence locale à zéro,
  • Attendre patiemment que tout le monde ait convergé (propagation des annonces),
  • Procéder à l'opération de maintenance, qui va couper BGP (et c'est plus joli si on utilise le RFC 8203).

J'ai dit plus haut qu'il n'était pas nécessaire de modifier le logiciel des routeurs BGP mais évidemment tout est plus simple s'ils connaissent la communauté GRACEFUL_SHUTDOWN et simplifient ainsi la tâche de l'administrateur réseaux. Cette communauté est « bien connue » (elle n'est pas spécifique à un AS), décrite dans la section 5 du RFC, enregistrée à l'IANA et sa valeur est 0xFFFF0000 (qui peut aussi s'écrire 65535:0, dans la notation habituelle des communautés).

La section 6 du RFC fait le tour de la sécurité de ce système. Comme il permet d'influencer le routage chez les pairs (on annonce une route avec la communauté GRACEFUL_SHUTDOWN et paf, le pair met une très faible préférence à ces routes), il ouvre la porte à de l'ingénierie du trafic pas toujours bienveillante. Il est donc prudent de regarder ce qu'annoncent ses pairs, et d'engueuler ou de dépairer ceux et celles qui abusent de ce mécanisme.

Pour les amateurs de solutions alternatives, l'annexe A explique les autres techniques qui auraient pu être utilisées lors de la réception des routes marquées avec GRACEFUL_SHUTDOWN. Au lieu d'influencer la préférence locale, on aurait par exemple pu utiliser le MED (multi-exit discriminator, RFC 4271, section 5.1.4) mais il n'est considéré par les pairs qu'après d'autres critères, et il ne garantit donc pas que le lien bientôt coupé ne sera plus utilisé.

L'annexe B donne des exemples de configuration pour différents types de routeurs. (Configurations pour l'AS qui reçoit la notification d'un arrêt proche, pas pour ceux qui émettent.) Ainsi, pour IOS XR :

   !    65535:0 = 0xFFFF0000 
   community-set comm-graceful-shutdown
     65535:0
   end-set

   route-policy AS64497-ebgp-inbound
     ! Règles appliquées aux annonces reçues du pair, l'AS 64497. Bien
     ! sûr, en vrai, il y aurait plein d'autres règles, par exemple de filtrage.
     if community matches-any comm-graceful-shutdown then
       set local-preference 0
     endif
     ! On a appliqué la règle du RFC : mettre la plus faible
     ! préférence locale possible  
   end-policy

   ! La configuration de la session BGP avec le pair
   router bgp 64496
    neighbor 2001:db8:1:2::1
     remote-as 64497
     address-family ipv6 unicast
      send-community-ebgp
      route-policy AS64497-ebgp-inbound in
    

Pour BIRD, cela sera :

   # (65535, 0) = 0xFFFF0000 
   function honor_graceful_shutdown() {
       if (65535, 0) ~ bgp_community then {
           bgp_local_pref = 0;
       }
   }
   filter AS64497_ebgp_inbound
   {
           # Règles appliquées aux annonces reçues du pair, l'AS 64497. Bien
           # sûr, en vrai, il y aurait plein d'autres règles, par
	   # exemple de filtrage.
           honor_graceful_shutdown();
   }
   protocol bgp peer_64497_1 {
       neighbor 2001:db8:1:2::1 as 64497;
       local as 64496;
       import keep filtered;
       import filter AS64497_ebgp_inbound;
   }
    

Et sur OpenBGPD (on voit qu'il connait GRACEFUL_SHUTDOWN, il n'y a pas besoin de donner sa valeur) :

   AS 64496
   router-id 192.0.2.1
   neighbor 2001:db8:1:2::1 {
           remote-as 64497
   }
   # Règles appliquées aux annonces reçues du pair, l'AS 64497. Bien
   # sûr, en vrai, il y aurait plein d'autres règles, par exemple de filtrage.
   match from any community GRACEFUL_SHUTDOWN set { localpref 0 }      
    

Enfin, l'annexe C du RFC décrit quelques détails supplémentaires, par exemple pour IBGP (BGP interne à un AS).

Notez que ce nouveau RFC est prévu pour le cas où la transmission des paquets (forwarding plane) est affectée. Si c'est uniquement la session BGP (control plane) qui est touchée, la solution du RFC 4724, Graceful Restart, est plus appropriée.


Téléchargez le RFC 8326


L'article seul

RFC 8334: Launch Phase Mapping for the Extensible Provisioning Protocol (EPP)

Date de publication du RFC : Mars 2018
Auteur(s) du RFC : J. Gould (VeriSign), W. Tan (Cloud Registry), G. Brown (CentralNic)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF regext
Première rédaction de cet article le 5 mars 2018


Les registres de noms de domaine ont parfois des périodes d'enregistrement spéciales, par exemple lors de la phase de lancement d'un nouveau domaine d'enregistrement, ou bien lorsque les règles d'enregistrement changent. Pendant ces périodes, les conditions d'enregistrement ne sont pas les mêmes que pendant les périodes « standards ». Les registres qui utilisent le protocole EPP pour l'enregistrement peuvent alors utiliser les extensions EPP de ce nouveau RFC pour gérer ces périodes spéciales.

Un exemple de période spéciale est l'ouverture d'un tout nouveau TLD à l'enregistrement. Un autre exemple est une libéralisation de l'enregistrement, passant par exemple de vérifications a priori strictes à un modèle plus ouvert. Dans les deux cas, on peut voir des conflits se faire jour, par exemple entre le titulaire le plus rapide à enregistrer un nom, et un détenteur de propriété intellectuelle qui voudrait reprendre le nom. Les périodes spéciales sont donc définies par des privilèges particuliers pour certains utilisateurs, permettant par exemple aux titulaires d'une marque déposée d'avoir un avantage pour le nom de domaine correspondant à cette marque. La période spéciale est qualifiée de « phase de lancement » (launch phase). Les extensions à EPP décrites dans ce nouveau RFC permettent de mettre en œuvre ces privilèges.

La classe (mapping) décrivant les domaines en EPP figure dans le RFC 5731. Elle est prévue pour le fonctionnement standard du registre, sans intégrer les périodes spéciales. Par exemple, en fonctionnement standard, une fois que quelqu'un a enregistré un nom, c'est fini, personne d'autre ne peut le faire. Mais dans les phases de lancement, il arrive qu'on accepte plusieurs candidatures pour un même nom, qui sera ensuite attribué en fonction de divers critères (y compris parfois une mise aux enchères). Ou bien il peut y avoir des vérifications supplémentaires pendant une phase de lancement. Par exemple, certaines phases peuvent être réservées aux titulaires de propriété intellectuelle, et cela est vérifié via un organisme de validation, comme la TMCH (RFC 7848).

D'où ce RFC qui étend la classe domain du RFC 5731. La section 2 du RFC décrit les nouveaux attributs et éléments des domaines, la section 3 la façon de les utiliser dans les commandes EPP et la section 4 donne le schéma XML. Voyons d'abord les nouveaux éléments et attributs.

D'abord, comme il peut y avoir plusieurs candidatures pour un même nom, il faut un moyen de les distinguer. C'est le but de l'identificateur de candidature (application identifier). Lorsque le serveur EPP reçoit une commande <domain:create> pour un nom, il attribue un identificateur de candidature, qu'il renvoie au client, dans un élément <launch:applicationID>, tout en indiquant que le domaine est en état pendingCreate (RFC 5731, section 2.3) puisque le domaine n'a pas encore été créé. Au passage, launch dans <launch:applicationID> est une abréviation pour l'espace de noms XML urn:ietf:params:xml:ns:launch-1.0. Un processeur XML correct ne doit évidemment pas tenir compte de l'abréviation (qui peut être ce qu'on veut) mais uniquement de l'espace de noms associé. Cet espace est désormais enregistré à l'IANA (cf. RFC 3688).

Autre nouveauté, comme un serveur peut utiliser plusieurs organismes de validation d'une marque déposée, il existe désormais un attribut validatorID qui indique l'organisme. Par défaut, c'est la TMCH (identificateur tmch). On pourra utiliser cet attribut lorsqu'on indiquera un identificateur de marque, par exemple lorsqu'on se sert de l'élément <mark:mark> du RFC 7848.

Les périodes spéciales ont souvent plusieurs phases, et notre RFC en définit plusieurs (dans une ouverture réelle, toutes ne sont pas forcément utilisées), qui seront utilisées dans l'élément <launch:phase> :

  • Lever de soleil (sunrise), phase où les titulaires de marques (le RFC ne mentionne pas d'autres cas, comme le nom de l'entreprise ou d'une ville) peuvent seuls soumettre des candidatures, la marque étant validée par exemple via la TMCH,
  • Prétentions (claims), où on peut enregistrer si on n'a pas de marque, mais on reçoit alors une notice disant qu'une marque similaire existe (elle est décrite plus en détail dans l'Internet-Draft draft-ietf-regext-tmch-func-spec), et on peut alors renoncer ou continuer (si on est d'humeur à affronter les avocats de la propriété intellectuelle), en annonçant, si on continue « oui, j'ai vu, j'y vais quand même »,
  • Ruée (landrush), phase immédiatement après l'ouverture, quand tout le monde et son chien peuvent se précipiter pour enregistrer,
  • État ouvert (open), une fois qu'on a atteint le régime de croisière.

La section 2 définit aussi les états d'une candidature. Notamment :

  • pendingValidation (validation en attente),
  • validated (c'est bon, mais voyez plus loin),
  • invalid (raté, vous n'avez pas de droits sur ce nom),
  • pendingAllocation (une fois qu'on est validé, tout n'est pas fini, il peut y avoir plusieurs candidatures, avec un mécanisme de sélection, par exemple fondé sur une enchère),
  • allocated (c'est vraiment bon),
  • rejected (c'est fichu…)

Les changements d'état ne sont pas forcément synchrones. Parfois, il faut attendre une validation manuelle, par exemple. Dans cas, il faut notifier le client EPP, ce qui se fait avec le mécanisme des messages asynchrones (poll message) du RFC 5730, section 2.9.2.3.

Comme toutes les extensions EPP, elle n'est utilisée par le client que si le serveur l'indique à l'ouverture de la session, en listant les espaces de noms XML des extensions qu'il accepte, par exemple :


<?xml version="1.0" encoding="UTF-8" standalone="no"?>
   <epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
      <greeting><svID>EPP beautiful server for .example</svID>
                <svDate>2018-02-20T15:37:20.0Z</svDate>
                <svcMenu><version>1.0</version><lang>en</lang>
                <objURI>urn:ietf:params:xml:ns:domain-1.0</objURI>
                <objURI>urn:ietf:params:xml:ns:contact-1.0</objURI>
                <svcExtension>
                <extURI>urn:ietf:params:xml:ns:rgp-1.0</extURI>
                <extURI>urn:ietf:params:xml:ns:secDNS-1.1</extURI>
                <extURI>urn:ietf:params:xml:ns:launch-1.0</extURI>
                </svcExtension>
                </svcMenu>
        </greeting>
   </epp>

    

Maintenant qu'on a défini les données, la section 3 du RFC explique comment les utiliser. (Dans tous les exemples ci-dessous, C: identifie ce qui est envoyé par le client EPP et S: ce que le serveur répond.) Par exemple, la commande EPP <check> (RFC 5730, section 2.9.2.1) sert à vérifier si on peut enregistrer un objet (ici, un nom de domaine). Elle prend ici des éléments supplémentaires, par exemple pour tester si un nom correspond à une marque. Ici, on demande si une marque existe (notez l'extension <launch:check>) :


C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
C:  <command>
C:   <check>
C:    <domain:check
C:     xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
C:      <domain:name>domain1.example</domain:name>
C:    </domain:check>
C:   </check>
C:   <extension>
C:    <launch:check
C:     xmlns:launch="urn:ietf:params:xml:ns:launch-1.0"
C:     type="trademark"/>
C:   </extension>
C:  </command>
C:</epp>

    

Et on a la réponse (oui, la marque existe dans la TMCH) :


S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
S:  <response>
S:    <result code="1000">
S:     <msg>Command completed successfully</msg>
S:    </result>
S:    <extension>
S:     <launch:chkData
S:      xmlns:launch="urn:ietf:params:xml:ns:launch-1.0">
S:      <launch:cd>
S:        <launch:name exists="1">domain1.example</launch:name>
S:        <launch:claimKey validatorID="tmch">
S:        2013041500/2/6/9/rJ1NrDO92vDsAzf7EQzgjX4R0000000001
S:        </launch:claimKey>
S:      </launch:cd>
S:     </launch:chkData>
S:    </extension>
S:  </response>
S:</epp>

    

Avec la commande EPP <info>, qui sert à récupérer des informations sur un nom, on voit ici qu'un nom est en attente (pendingCreate), et on a l'affichage de la phase actuelle du lancement, dans l'élément <launch:phase> :


C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
C:  <command>
C:   <info>
C:    <domain:info
C:     xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
C:      <domain:name>domain.example</domain:name>
C:    </domain:info>
C:   </info>
C:   <extension>
C:    <launch:info
C:     xmlns:launch="urn:ietf:params:xml:ns:launch-1.0"
C:       includeMark="true">
C:      <launch:phase>sunrise</launch:phase>
C:    </launch:info>
C:   </extension>
C:  </command>
C:</epp>
    

Et le résultat, avec entre autre l'identificateur de candidature :


S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
S:  <response>
S:    <result code="1000">
S:      <msg>Command completed successfully</msg>
S:    </result>
S:    <resData>
S:      <domain:infData
S:       xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
S:        <domain:name>domain.example</domain:name>
S:        <domain:status s="pendingCreate"/>
S:        <domain:registrant>jd1234</domain:registrant>
S:        <domain:contact type="admin">sh8013</domain:contact>
S:        <domain:crDate>2012-04-03T22:00:00.0Z</domain:crDate>
   ...
S:      </domain:infData>
S:    </resData>
S:    <extension>
S:      <launch:infData
S:       xmlns:launch="urn:ietf:params:xml:ns:launch-1.0">
S:        <launch:phase>sunrise</launch:phase>
S:          <launch:applicationID>abc123</launch:applicationID>
S:          <launch:status s="pendingValidation"/>
S:          <mark:mark
S:            xmlns:mark="urn:ietf:params:xml:ns:mark-1.0">
S:             ...
S:         </mark:mark>
S:      </launch:infData>
S:    </extension>
S:  </response>
S:</epp>

    

C'est bien joli d'avoir des informations mais, maintenant, on voudrait créer des noms de domaine. La commande EPP <create> (RFC 5730, section 2.9.3.1) sert à cela. Selon la phase de lancement, il faut lui passer des extensions différentes. Pendant le lever de soleil (sunrise), il faut indiquer la marque déposée sur laquelle on s'appuie, dans <launch:codeMark> (il y a d'autres moyens de l'indiquer, cf. section 2.6) :


C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
C:  <command>
C:    <create>
C:      <domain:create
C:       xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
C:        <domain:name>domain.example</domain:name>
C:        <domain:registrant>jd1234</domain:registrant>
   ...
C:      </domain:create>
C:    </create>
C:    <extension>
C:      <launch:create
C:       xmlns:launch="urn:ietf:params:xml:ns:launch-1.0">
C:        <launch:phase>sunrise</launch:phase>
C:        <launch:codeMark>
C:          <launch:code validatorID="sample1">
C:            49FD46E6C4B45C55D4AC</launch:code>
C:        </launch:codeMark>
C:      </launch:create>
C:    </extension>
C:  </command>
C:</epp>

    

On reçoit une réponse qui dit que le domaine n'est pas encore créé, mais on a un identificateur de candidature (un numéro de ticket, quoi) en <launch:applicationID>. Notez le code de retour 1001 (j'ai compris mais je ne vais pas le faire tout de suite) et non pas 1000, comme ce serait le cas en régime de croisière :


S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
S:  <response>
S:    <result code="1001">
S:      <msg>Command completed successfully; action pending</msg>
S:    </result>
S:    <resData>
S:      <domain:creData
S:         xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
S:       <domain:name>domain.example</domain:name>
S:       <domain:crDate>2010-08-10T15:38:26.623854Z</domain:crDate>
S:      </domain:creData>
S:    </resData>
S:    <extension>
S:      <launch:creData
S:        xmlns:launch="urn:ietf:params:xml:ns:launch-1.0">
S:        <launch:phase>sunrise</launch:phase>
S:        <launch:applicationID>2393-9323-E08C-03B1
S:        </launch:applicationID>
S:      </launch:creData>
S:    </extension>
S:  </response>
S:</epp>

    

De même, des extensions permettent de créer un domaine pendant la phase où il faut indiquer qu'on a vu les prétentions qu'avait un titulaire de marque sur ce nom. Le RFC décrit aussi l'extension à utiliser dans la phase de ruée (landrush), mais j'avoue n'avoir pas compris son usage (puisque, pendant la ruée, les règles habituelles s'appliquent).

On peut également retirer une candidature, avec la commande EPP <delete> qui, en mode standard, sert à supprimer un domaine. Il faut alors indiquer l'identifiant de la candidature qu'on retire :


C:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
C:  <command>
C:   <delete>
C:    <domain:delete
C:     xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
C:      <domain:name>domain.example</domain:name>
C:    </domain:delete>
C:   </delete>
C:   <extension>
C:    <launch:delete
C:     xmlns:launch="urn:ietf:params:xml:ns:launch-1.0">
C:      <launch:phase>sunrise</launch:phase>
C:      <launch:applicationID>abc123</launch:applicationID>
C:    </launch:delete>
C:   </extension>
C:  </command>
C:</epp>

    

Et les messages non sollicités (poll), envoyés de manière asynchrone par le serveur ? Voici un exemple, où le serveur indique que la candidature a été jugée valide (le mécanisme par lequel on passe d'un état à un autre dépend de la politique du serveur) :


S:<epp xmlns="urn:ietf:params:xml:ns:epp-1.0">
S:  <response>
S:    <result code="1301">
S:      <msg>Command completed successfully; ack to dequeue</msg>
S:    </result>
S:    <msgQ count="5" id="12345">
S:      <qDate>2013-04-04T22:01:00.0Z</qDate>
S:      <msg>Application pendingAllocation.</msg>
S:    </msgQ>
S:    <resData>
S:      <domain:infData
S:       xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">
S:        <domain:name>domain.example</domain:name>
S:        ...
S:      </domain:infData>
S:    </resData>
S:    <extension>
S:      <launch:infData
S:       xmlns:launch="urn:ietf:params:xml:ns:launch-1.0">
S:        <launch:phase>sunrise</launch:phase>
S:        <launch:applicationID>abc123</launch:applicationID>
S:        <launch:status s="pendingAllocation"/>
S:      </launch:infData>
S:    </extension>
S:  </response>
S:</epp>

    

Voilà, vous savez l'essentiel, si vous voulez tous les détails, il faudra lire la section 3 complète, ainsi que la section 4, qui contient le schéma XML des extensions pour les phases de lancement. Comme toutes les extensions à EPP, celle de ce RFC est désormais dans le registre des extensions EPP, décrit dans le RFC 7451.

Notez que ce RFC ne fournit pas de moyen pour indiquer au client EPP quelle est la politique d'enregistrement pendant la période spéciale. Cela doit être fait par un mécanisme externe (page Web du registre, par exemple).

Quelles sont les mises en œuvre de ce RFC ? L'extension pour les phases de lancement est ancienne (première description en 2011) et de nombreux registres offrent désormais cette possibilité. C'est d'autant plus vrai que l'ICANN impose aux registres de ses nouveaux TLD de gérer les phases de lancement avec cette extension. Ainsi :

  • Le kit de développement de clients EPP de Verisign a cette extension, sous une licence libre.
  • Logiquement, le système d'enregistrement de Verisign, utilisé notamment pour .com et .net (mais également pour bien d'autres TLD) gère cette extension (code non libre et non public, cette fois).
  • Le serveur REngin (non libre), utilisé pour .za a aussi cette extension.
  • Le serveur de CentralNIC, pareil.
  • Le client EPP distribué par Neustar est sous licence libre et sait gérer les phases de lancement.
  • Le serveur (non libre) de SIDN (qui gère le domaine national .nl) fait partie de ceux qui ont mis en œuvre ce RFC.
  • Et côté client, il y a le logiciel libre Net::DRI (extension ajoutée dans une scission nommée tdw, pas dans le logiciel originel de Patrick Mevzek), cf. LaunchPhase.pm.

Téléchargez le RFC 8334


L'article seul

RFC 8324: DNS Privacy, Authorization, Special Uses, Encoding, Characters, Matching, and Root Structure: Time for Another Look?

Date de publication du RFC : Février 2018
Auteur(s) du RFC : J. Klensin
Pour information
Première rédaction de cet article le 28 février 2018


Le DNS est une infrastructure essentielle de l'Internet. S'il est en panne, rien ne marche (sauf si vous faites partie de la minorité qui fait uniquement des ping -n et des traceroute -n). S'il est lent, tout rame. Comme le DNS, heureusement, marche très bien, et s'est montré efficace, fiable et rapide, il souffre aujourd'hui de la malédiction des techniques à succès : on essaie de charger la barque, de lui faire faire plein de choses pour lesquelles il n'était pas prévu. D'un côté, c'est un signe de succès. De l'autre, c'est parfois fragilisant. Dans ce RFC individuel (qui exprime juste le point de vue d'un individu, et n'est pas du tout une norme IETF), John Klensin, qui ne participe plus activement au développement du DNS depuis des années, revient sur certaines de ces choses qu'on essaie de faire faire au DNS et se demande si ce n'est pas trop, et à partir de quel point il faudrait arrêter de « perfectionner » le DNS et plutôt passer à « autre chose » (« quand le seul outil qu'on a est un marteau, tous les problèmes ressemblent à des clous… »). Une bonne lecture pour celleszetceux qui ne veulent pas seulement faire marcher le DNS mais aussi se demander « pourquoi c'est comme ça ? » et « est-ce que ça pourrait être différent ? »

Améliorer le système petit à petit ou bien le remplacer complètement ? C'est une question que se posent régulièrement les ingénieurs, à propos d'un logiciel, d'un langage de programmation, d'un protocole réseau. À l'extrême, il y a l'ultra-conservateur qui ne voit que des inconvénients aux solutions radicales, à l'autre il y a l'ultra-optimiste qui en a marre des rustines et qui voudrait jeter le vieux système, pour le remplacer par un système forcément meilleur, car plus récent. Entre les deux, beaucoup d'informaticiens hésitent. L'ultra-conservateur oublie que les rustines successives ont transformé l'ancien système en un monstre ingérable et difficile à maintenir, l'ultra-optimiste croit naïvement qu'un système nouveau, rationnellement conçu (par lui…) sera à coup sûr plus efficace et moins bogué. Mais les deux camps, et tout celleszetceux qui sont entre les deux peuvent tirer profit de ce RFC, pour approfondir leur réflexion.

Klensin note d'abord que le DNS est vieux. La première réflexion à ce sujet était le RFC 799 en 1981, et le premier RFC décrivant le DNS est le RFC 882, en novembre 1983. (Paul Mockapetris a raconté le développement du DNS dans « Development of the Domain Name System », j'ai fait un résumé des articles d'histoire du DNS.) Le DNS remplaçait l'ancien système fondé sur un fichier centralisé de noms de machines (RFC 810, RFC 952, et peut-être aussi RFC 953). Tout n'est pas écrit : le DNS n'a pas aujourd'hui une spécification unique et à jour, aux RFC de base (RFC 1034 et RFC 1035, il faut ajouter des dizaines de RFC qui complètent ou modifient ces deux-ci, ainsi que pas mal de culture orale. (Un exemple de cette difficulté était que, pendant le développement du RFC 7816, son auteur s'est aperçu que personne ne se souvenait pourquoi les résolveurs envoyaient le FQDN complet dans les requêtes.) Plusieurs techniques ont même été supprimées comme les requêtes inverses (RFC 3425) ou comme les types d'enregistrement WKS, MD, MF et MG.

D'autres auraient dû être supprimées, car inutilisables en pratique, comme les classes (que prétendait utiliser le projet Net4D), et qui ont fait l'objet de l'Internet-Draft « The DNS Is Not Classy: DNS Classes Considered Useless », malheureusement jamais adopté dans une IETF parfois paralysée par la règle du consensus.

D'autres évolutions ont eu lieu : le DNS original ne proposait aucun mécanisme d'options, tous les clients et tous les serveurs avaient exactement les mêmes capacités. Cela a changé avec l'introduction d'EDNS, dans le RFC 2671 en 1999.

Beaucoup d'articles ont été écrits sur les systèmes de nommage. (Le RFC recommande l'article de V. Cerf, « Desirable Properties of Internet Identifiers », ou bien le livre « Signposts in Cyberspace: The Domain Name System and Internet Navigation ». Je me permets de rajouter mes articles, « Inventer un meilleur système de nommage : pas si facile », « Un DNS en pair-à-pair ? » et « Mon premier nom Namecoin enregistré ».)

Pourquoi est-ce que les gens ne sont pas contents du DNS actuel et veulent le changer (section 4 du RFC, la plus longue du RFC) ? Il y a des tas de raisons. Certaines, dit l'auteur, peuvent mener à des évolutions raisonnables du DNS actuel. Certaines nécessiteraient un protocole complètement nouveau, incompatible avec le DNS. D'autres enfin seraient irréalistes, quel que soit le système utilisé. La section 4 les passe en revue (rappelez-vous que ce RFC est une initiative individuelle, pas une opinion consensuelle à l'IETF).

Premier problème, les requêtes « multi-types ». À l'heure actuelle, une requête DNS est essentiellement composée d'un nom (QNAME, Query Name) et d'un type (QTYPE, Query Type, par exemple AAAA pour une adresse IP, TLSA pour une clé publique, etc). Or, on aurait parfois besoin de plusieurs types. L'exemple classique est celui d'une machine double-pile (IPv6 et le vieil IPv4), qui ne sait pas quelle version d'IP est acceptée en face et qui demande donc l'adresse IPv6 et l'adresse IPv4 du pair. Il n'y a actuellement pas de solution pour ce problème, il faut faire deux requêtes DNS. (Et, non, ANY ne résout pas ce problème, notamment en raison de l'interaction avec les caches : que doit faire un cache qui ne connait qu'une seule des deux adresses ?)

Deuxième problème, la sensibilité à la casse. La norme originale prévoyait des requêtes insensibles à la casse (RFC 1034, section 3.1), ce qui semble logique aux utilisateurs de l'alphabet latin. Mais c'est plutôt une source d'ennuis pour les autres écritures (et c'est une des raisons pour lesquelles accepter l'Unicode dans les noms de domaine nécessite des méthodes particulières). Avec ASCII, l'insensibilité à la casse est facile (juste un bit à changer pour passer de majuscule en minuscule et réciproquement) mais ce n'est pas le cas pour le reste d'Unicode. En outre, il n'est pas toujours évident de connaitre la correspondance majuscule-minuscule (cf. les débats entre germanophones sur la majuscule de ß). Actuellement, les noms de domaine en ASCII sont insensibles à la casse et ceux dans le reste du jeu de caractères Unicode sont forcément en minuscules (cf. RFC 5890), libre à l'application de mettre ses propres règles d'insensibilité à la casse si elle veut, lorsque l'utilisateur utilise un nom en majuscules comme RÉUSSIR-EN.FR. On referait le DNS en partant de zéro, peut-être adopterait-on UTF-8 comme encodage obligatoire, avec normalisation NFC dans les serveurs de noms, mais c'est trop tard pour le faire.

En parlant d'IDN, d'ailleurs, ce sujet a été à l'origine de nombreuses discussions, incluant pas mal de malentendus (pour lesquels, à mon humble avis, l'auteur de RFC a une sérieuse responsabilité). Unicode a une particularité que n'a pas ASCII : le même caractère peut être représenté de plusieurs façons. L'exemple classique est le É qui peut être représenté par un point de code, U+00C9 (LATIN CAPITAL LETTER E WITH ACUTE), ou par deux, U+0045 (LATIN CAPITAL LETTER E) et U+0301 (COMBINING ACUTE ACCENT). Je parle bien de la représentation en points de code, pas de celle en bits sur le réseau, qui est une autre affaire ; notez que la plupart des gens qui s'expriment à propos d'Unicode sur les forums ne connaissent pas Unicode. La normalisation Unicode vise justement à n'avoir qu'une forme (celle à un point de code si on utilise NFC) mais elle ne traite pas tous les cas gênants. Par exemple, dans certains cas, la fonction de changement de casse dépend de la langue (que le DNS ne connait évidemment pas). Le cas le plus célèbre est celui du i sans point U+0131, qui a une règle spécifique en turc. Il ne sert à rien de râler contre les langues humaines (elles sont comme ça, point), ou contre Unicode (dont la complexité ne fait que refléter celles des langues humaines et de leurs écritures). Le point important est qu'on n'arrivera pas à faire en sorte que le DNS se comporte comme M. Toutlemonde s'y attend, sauf si on se limite à un M. Toutlemonde étatsunien (et encore).

Les IDN ont souvent été accusés, y compris dans ce RFC, de permettre, ou en tout cas de faciliter, le hameçonnage par la confusion possible entre deux caractères visuellement proches. En fait, le problème n'est pas spécifique aux IDN (regardez google.com et goog1e.com) et les études montrent que les utilisateurs ne vérifient pas les noms, de toute façon. Bref, il s'agit de simple propagande de la part de ceux qui n'ont jamais vraiment accepté Unicode.

Les IDN nous amènent à un problème proche, celui des synonymes. Les noms de domaine color.example et colour.example sont différents alors que, pour tout anglophone, color et colour sont « équivalents ». J'ai mis le mot « équivalent » entre guillemets car sa définition même est floue. Est-ce que « Saint-Martin » est équivalent à « St-Martin » ? Et est-ce que « Dupont » est équivalent à « Dupond » ? Sans même aller chercher des exemples comme l'équivalence entre sinogrammes simplifiés et sinogrammes traditionnels, on voit que l'équivalence est un concept difficile à cerner. Souvent, M. Michu s'agace « je tape st-quentin.fr, pourquoi est-ce que ça n'est pas la même chose que saint-quentin-en-yvelines.fr ? » Fondamentalement, la réponse est que le DNS ne gère pas les requêtes approximatives, et qu'il n'est pas évident que tout le monde soit d'accord sur l'équivalence de deux noms. Les humains se débrouillent avec des requêtes floues car ils ont un contexte. Si on est dans les Yvelines, je sais que « St-Quentin » est celui-ci alors que, si on est dans l'Aisne, mon interlocuteur parle probablement de celui-là. Mais le DNS n'a pas ce contexte.

Plusieurs RFC ont été écrit à ce sujet, RFC 3743, RFC 4290, RFC 6927 ou RFC 7940, sans résultats convaincants. Le DNS a bien sûr des mécanismes permettant de dire que deux noms sont équivalents, comme les alias (enregistrements CNAME) ou comme les DNAME du RFC 6672. Mais :

  • Aucun d'entre eux n'a exactement la sémantique que les utilisateurs voudraient (d'où des propositions régulières d'un nouveau mécanisme comme les BNAME),
  • Et ils supposent que quelqu'un ait configuré les correspondances, ce qui suscitera des conflits, et ne satisfera jamais tout le monde.

Même écrire un cahier des charges des « variantes » n'a jamais été possible. (C'est également un sujet sur lequel j'avais écrit un article.)

Passons maintenant aux questions de protection de la vie privée. L'auteur du RFC note que la question suscite davantage de préoccupations aujourd'hui mais ne rappelle pas que ces préoccupations ne sont pas irrationnnelles, elles viennent en grande partie de la révélation de programmes de surveillance massive comme MoreCowBell. Et il « oublie » d'ailleurs de citer le RFC 7626, qui décrit en détail le problème de la vie privée lors de l'utilisation du DNS.

J'ai parlé plus haut du problème des classes dans le DNS, ce paramètre supplémentaire des enregistrements DNS (un enregistrement est identifié par trois choses, le nom, la classe et le type). L'idée au début (RFC 1034, section 3.6) était de gérer depuis le DNS plusieurs protocoles très différents (IP, bien sûr, mais aussi CHAOS et d'autres futurs), à l'époque où le débat faisait rage entre partisans d'un réseau à protocole unique (le futur Internet) et ceux et celles qui préféraient un catenet, fondé sur l'interconnexion de réseaux techniquement différents. Mais, aujourd'hui, la seule classe qui sert réellement est IN (Internet) et, en pratique, il y a peu de chances que les autres soient jamais utilisées. Il a parfois été suggéré d'utiliser les classes pour partitionner l'espace de noms (une classe IN pour l'ICANN et créer une classe UN afin de la donner à l'UIT pour qu'elle puisse jouer à la gouvernance ?) mais le fait que les classes aient été très mal normalisées laisse peu d'espoir. (Est-ce que IN example, CH example et UN example sont la même zone ? Ont-ils les mêmes serveurs de noms ? Cela n'a jamais été précisé.)

Une particularité du DNS qui déroute souvent les nouveaux administrateurs système est le fait que les données ne soient que faiblement synchronisées : à un moment donné, il est parfaitement normal que plusieurs valeurs coexistent dans l'Internet. Cela est dû à plusieurs choix, notamment :

  • Celui d'avoir plusieurs serveurs faisant autorité pour une zone, et sans mécanisme assurant leur synchronisation forte. Lorsque le serveur maître (ou primaire) est mis à jour, il sert immédiatement les nouvelles données, sans attendre que les esclaves (ou secondaires) se mettent à jour.
  • Et le choix d'utiliser intensivement les caches, la mémoire des résolveurs. Si un serveur faisant autorité sert un enregistrement avec un TTL de 7 200 secondes (deux heures) et que, cinq minutes après qu'un résolveur ait récupéré cet enregistrement, le serveur faisant autorité modifie l'enregistrement, les clients du résolveur verront encore l'ancienne valeur pendant 7 200 - 300 = 6 900 secondes.

Cela a donné naissance à la légende de la propagation du DNS et aux chiffres fantaisistes qui accompagnent cette légende comme « il faut 24 h pour que le DNS se propage ».

Ces choix ont assuré le succès du DNS, en lui permettant de passer à l'échelle, vers un Internet bien plus grand que prévu à l'origine. Un modèle à synchronisation forte aurait été plus compliqué, plus fragile et moins performant.

Mais tout choix en ingéniérie a des bonnes conséquences et des mauvaises : la synchronisation faible empêche d'utiliser le DNS pour des données changeant souvent. Des perfectionnements ont eu lieu (comme la notification non sollicitée du RFC 1996, qui permet aux serveurs secondaires d'être au courant rapidement d'un changement, mais qui ne marche que dans le cas où on connait tous les secondaires) mais n'ont pas fondamentalement changé le tableau. Bien sûr, les serveurs faisant autorité qui désireraient une réjuvénation plus rapide peuvent toujours abaisser le TTL mais, en dessous d'une certaine valeur (typiquement 30 à 60 minutes), les TTL trop bas sont parfois ignorés.

Un autre point où les demandes de beaucoup d'utilisateurs rentrent en friction avec les concepts du DNS est celui des noms privés, des noms qui n'existeraient qu'à l'intérieur d'une organisation particulière, et qui ne nécessiteraient pas d'enregistrement auprès d'un tiers. La bonne méthode pour avoir des noms privés est d'utiliser un sous-domaine d'un domaine qu'on a enregistré (aujourd'hui, tout le monde peut avoir son domaine assez facilement, voir gratuitement), et de le déléguer à des serveurs de noms qui ne sont accessibles qu'en interne. Si on est l'association Example et qu'on est titulaire de example.org, on crée priv.example.org et on y met ensuite les noms « privés » (je mets privé entre guillemets car, en pratique, comme le montrent les statistiques des serveurs de noms publics, de tels noms fuitent souvent à l'extérieur, par exemple quand un ordinateur portable passe du réseau interne à celui d'un FAI public).

Il faut noter que beaucoup d'organisations, au lieu d'utiliser la bonne méthode citée ci-dessus, repèrent un TLD actuellement inutilisé (.home, .lan, .private…) et s'en servent. C'est une très mauvaise idée, car, un jour, ces TLD seront peut-être délégués, avec les risques de confusion que cela entrainera (cf. le cas de .box et celui de .dev).

Les administrateurs système demandent souvent « mais quel est le TLD réservé pour les usages internes » et sont surpris d'apprendre qu'il n'en existe pas. C'est en partie pour de bonnes raisons (imaginez deux entreprises utilisant ce TLD et fusionnant… Ou simplement s'interconnectant via un VPN… Un problème qu'on voit souvent avec le RFC 1918.) Mais c'est aussi en partie parce que les tentatives d'en créer un se sont toujours enlisées dans les sables de la bureaucratie (personne n'a envie de passer dix ans de sa vie professionnelle à faire du lobbying auprès de l'ICANN pour réserver un tel TLD). La dernière tentative était celle de .internal mais elle n'a pas marché.

Il y a bien un registre des noms de domaines (pas uniquement des TLD) « à usage spécial », créé par le RFC 6761. Il a malheureusement été gelé par l'IESG et fait l'objet de contestations (RFC 8244). Aucun des noms qu'il contient ne convient vraiment au besoin de ceux qui voudraient des noms de domaine internes (à part .test qui devrait logiquement être utilisé pour les bancs de test, de développement, etc). Le RFC note qu'un des principaux problèmes d'un tel registre est qu'il est impossible de garder à jour tous les résolveurs de la planète quand ce registre est modifié. On ne peut donc pas garantir qu'un nouveau TLD réservé sera bien traité de manière spéciale par tous les résolveurs.

Une caractéristique du DNS qui a suscité beaucoup de débats, pas toujours bien informés et pas toujours honnêtes, est l'existence de la racine du DNS, et des serveurs qui la servent. Lors de la mise au point du DNS, la question s'était déjà posée, certains faisant remarquer que cette racine allait focaliser les problèmes, aussi bien techniques que politiques. L'expérience a montré qu'en fait la racine marchait bien, mais cela n'a pas évité les polémiques. Le RFC note que le sujet est très chaud : qui doit gérer un serveur racine ? Où faut-il les placer physiquement ? Si l'anycast a largement résolu la seconde question (RFC 7094), la première reste ouverte. Le RFC n'en parle pas mais, si la liste des onze (ou douze, ça dépend comment on compte) organisations qui gèrent un serveur racine n'a pas évolué depuis vingt ans, ce n'est pas pour des raisons techniques, ni parce qu'aucune organisation n'est capable de faire mieux que les gérants actuels, mais tout simplement parce qu'il n'existe aucun processus pour supprimer ou ajouter un serveur racine. Comme pour les membres permanents du Conseil de Sécurité de l'ONU, on en reste au statu quo, aussi inacceptable soit-il, simplement parce qu'on ne sait pas faire autrement.

Le problème de la gestion de la racine n'est pas uniquement celui de la gestion des serveurs racine. Le contenu de la zone racine est tout aussi discuté. Si les serveurs racine sont les imprimeurs du DNS, le gérant de la zone racine en est l'éditeur. Par exemple, combien faut-il de TLD ? Si quelqu'un veut créer .pizza, faut-il le permettre ? Et .xxx ? Et .vin, que le gouvernement français avait vigoureusement combattu ? Ou encore .home, déjà largement utilisé informellement dans beaucoup de réseaux locaux, mais pour lequel il y avait trois candidatures à l'ICANN (rejetées peu de temps avant la publication du RFC). Ces questions, qui se prêtent bien aux jeux politiciens, occupent actuellement un bon bout des réunions ICANN.

La base technique à ces discussions est qu'il n'y a qu'une seule racine (RFC 2826). Son contrôle va donc forcément susciter des conflits. Un autre système de nommage que le DNS, si on le concevait de nos jours, pourrait éviter le problème en évitant ces points de contrôle. Les techniques à base de chaînes de blocs comme Namecoin sont évidemment des candidates possibles. Outre les problèmes pratiques (avec Namecoin, quand on perd sa clé privée, on perd son domaine), la question de fond est « quelle gouvernance souhaite-t-on ? »

La question de la sémantique dans les noms de domaines est également délicate. L'auteur affirme que les noms de domaines sont (ou en tout cas devraient être) de purs identificateurs techniques, sans sémantique. Cela permet de justifier les limites des noms (RFC 1034, section 3.5) : s'ils sont de purs identificateurs techniques, il n'est pas nécessaire de permettre les IDN, par exemple. On peut se contenter des lettres ASCII, des chiffres et du tiret, la règle dite LDH, qui vient du RFC 952. Cette règle « Letters-Digits-Hyphen » a été une première fois remise en cause vers 1986 lorsque 3Com a voulu son nom de domaine 3com.com (à l'époque, un nom devait commencer par une lettre, ce qui a été changé par la norme actuelle, RFC 1123). Mais cela laisse d'autres marques sans nom de domaine adapté, par exemple C&A ne peut pas avoir c&a.fr. Sans parler des cas de ceux et celles qui n'utilisent pas l'alphabet latin.

L'argument de Klensin est que ce n'est pas grave : on demande juste aux noms de domaine d'être des identificateurs uniques et non ambigus. Qu'ils ne soient pas très « conviviaux » n'est pas un problème. Inutile de dire que ce point de vue personnel ne fait pas l'unanimité.

Bien sûr, il y a aussi un aspect technique. Si on voulait, dit l'auteur ironiquement, permettre l'utilisation de la langue naturelle dans les noms de domaine, il faudrait aussi supprimer la limite de 63 caractères par composant (255 caractères pour le nom complet). Il est certain qu'il est difficile d'avoir des identificateurs qui soient à la fois utiles pour les programmes (simples, non ambigus) et pour les humains.

Le DNS n'est pas figé, et a évolué depuis ses débuts. Notamment, beaucoup de nouveaux types (RRTYPE, pour Resource Record Type) ont été créés avec le temps (cf. RFC 6895). Ce sont, par exemple :

  • NAPTR (RFC 3403), système que je trouve fort compliqué et qui n'a pas eu de succès,
  • URI (RFC 7553) qui permet de stocker des URI dans le DNS (par exemple, dig +short URI 78100.cp.bortzmeyer.fr va vous donner un URI OpenStreetMap correspondant au code postal 78100),
  • SRV (RFC 2782), qui généralise le vieux MX en permettant une indirection depuis le nom de domaine vers un nom de serveur (hélas, HTTP est le seul protocole Internet qui, stupidement, ne l'utilise pas).

Une observation à partir de l'étude du déploiement de tous les nouveaux types d'enregistrement est que ça se passe mal : pare-feux débiles qui bloquent les types qu'ils ne connaissent pas, interfaces de gestion du contenu des zones qui ne sont jamais mises à jour (bien des hébergeurs DNS ne permettent pas d'éditer URI ou TLSA, voir simplement SRV), bibliothèques qui ne permettent pas de manipuler ces types… Cela a entrainé bien des concepteurs de protocole à utiliser le type « fourre-tout » TXT. Le RFC 5507 explique ses avantages et (nombreux) inconvénients. (Le RFC 6686 raconte comment le type générique TXT a vaincu le type spécifique SPF.)

Aujourd'hui, tout le monde et son chien a un nom de domaine. Des noms se créent en quantité industrielle, ce qui est facilité par l'automatisation des procédures, et le choix de certains registres de faire des promotions commerciales. Il n'est pas exagéré de dire que, surtout dans les nouveaux TLD ICANN, la majorité des noms sont créés à des fins malveillantes. Il est donc important de pouvoir évaluer la réputation d'un nom : si mail.enlargeyourzob.xyz veut m'envoyer du courrier, puis-je utiliser la réputation de ce domaine (ce qu'il a fait précédemment) pour décider de rejeter le message ou pas ? Et si un utilisateur clique sur http://www.bitcoinspaschers.town/, le navigateur Web doit-il l'avertir que ce domaine a mauvaise réputation ? Le RFC, souvent nostalgique, rappelle que le modèle original du DNS, formalisé dans le RFC 1591, était que chaque administrateur de zone était compétent, responsable et honnête. Aujourd'hui, chacune de ces qualités est rare et leur combinaison est encore plus rare. L'auteur du RFC regrette que les registres ne soient pas davantage comptables du contenu des zones qu'ils gèrent, ce qui est un point de vue personnel et très contestable : pour un TLD qui est un service public, ce serait une violation du principe de neutralité.

Bref, en pratique, il est clair aujourd'hui qu'on trouve de tout dans le DNS. Il serait donc souhaitable qu'on puisse trier le bon grain de l'ivraie mais cela présuppose qu'on connaisse les frontières administratives. Elles ne coïncident pas forcément avec les frontières techniques (.fr et gouv.fr sont actuellement dans la même zone alors que le premier est sous la responsabilité de l'AFNIC et le second sous celle du gouvernement français). Rien dans le DNS ne les indique (le point dans un nom de domaine indique une frontière de domaine, pas forcément une frontière de zone, encore moins une frontière de responsabilité). Beaucoup de légendes circulent à ce sujet, par exemple beaucoup de gens croient à tort que tout ce qui se trouve avant les deux derniers composants d'un nom est sous la même autorité que le nom de deuxième niveau (cf. mon article sur l'analyse d'un nom). Il n'y a pas actuellement de mécanisme standard et sérieux pour déterminer les frontières de responsabilité dans un nom de domaine. Plusieurs efforts avaient été tentés à l'IETF mais ont toujours échoué. La moins mauvaise solution, aujourd'hui, est la Public Suffix List.

Beaucoup plus technique, parmi les problèmes du DNS, est celui de la taille des paquets. Car la taille compte. Il y a très très longtemps, la taille d'une réponse DNS était limitée à 512 octets. Cette limite a été supprimée en 1999 avec le RFC 2671 (c'est d'ailleurs une excellente question pour un entretien d'embauche lorsque le candidat a mis « DNS » dans la liste de ses compétences : « quelle est la taille maximale d'une réponse DNS ? »). En théorie, les réponses peuvent désormais être plus grandes (la plupart des serveurs sont configurés pour 4 096 octets) mais on se heurte à une autre limite : la MTU de 1 500 octets tend à devenir une valeur sacrée, et les réponses plus grandes que cette taille ont du mal à passer, par exemple parce qu'un pare-feu idiot bloque les fragments IP, ou parce qu'un pare-feu tout aussi crétin bloque l'ICMP, empêchant les messages Packet Too Big de passer (cf. RFC 7872).

Bref, on ne peut plus trop compter sur la fragmentation, et les serveurs limitent parfois leur réponse en UDP (TCP n'a pas de problème) à moins de 1 500 octets pour cela.

Une section entière du RFC, la 5, est consacrée au problème de la requête inverse, c'est-à-dire comment trouver un nom de domaine en connaissant le contenu d'un enregistrement lié à ce nom. La norme historique prévoyait une requête spécifique pour cela, IQUERY (RFC 1035, sections 4.1.1 et 6.4). Mais elle n'a jamais réellement marché (essentiellement parce qu'elle suppose qu'on connaisse déjà le serveur faisant autorité… pour un nom de domaine qu'on ne connait pas encore) et a été retirée dans le RFC 3425. Pour permettre quand même des « requêtes inverses » pour le cas le plus demandé, la résolution d'une adresse IP en un nom de domaine, un truc spécifique a été développé, l'« arbre inverse » in-addr.arpa (puis plus tard ip6.arpa pour IPv6). Ce truc n'utilise pas les IQUERY mais des requêtes normales, avec le type PTR. Ainsi, l'option -x de dig permet à la fois de fabriquer le nom en in-addr.arpa ou ip6.arpa et de faire une requête de type PTR pour lui :

% dig -x 2001:678:c::1
...
;; ANSWER SECTION:
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.c.0.0.0.8.7.6.0.1.0.0.2.ip6.arpa. 172796 IN PTR	d.nic.fr.
  

Cette technique pose des problèmes dans le cas de préfixes IPv4 ne tenant pas sur une frontière d'octets (cas traité par le RFC 2317). Globalement, c'est toujours resté un truc, parfois utile, souvent surestimé, mais ne fournissant jamais un service général. Une tentative avait été faite à l'IETF pour décrire ce truc et son utilisation, mais elle n'a jamais abouti (draft-ietf-dnsop-reverse-mapping-considerations), la question étant trop sensible (même écrire « des gens trouvent que les enregistrements PTR sont utiles, d'autres personnes ne sont pas d'accord », même une phrase comme cela ne rencontrait pas de consensus).

Enfin, la section 7 du RFC est consacrée à un problème difficile : le DNS ne permet pas de recherche floue. Il faut connaitre le nom exact pour avoir les données. Beaucoup d'utilisateurs voudraient quelque chose qui ressemble davantage à un moteur de recherche. Ils n'ont pas d'idée très précise sur comment ça devrait fonctionner mais ils voudraient pouvoir taper « st quentin » et que ça arrive sur www.saint-quentin-en-yvelines.fr. Le fait qu'il existe plusieurs villes nommées Saint-Quentin ne les arrête pas ; ils voudraient que ça marche « tout seul ». Le DNS a un objectif très différent : fournir une réponse exacte à une question non ambigüe.

Peut-être aurait-on pu développer un service de recherche floue au dessus du DNS. Il y a eu quelques réflexions à ce sujet (comme le projet IRNSS ou comme le RFC 2345) mais ce n'est jamais allé très loin. En pratique, les moteurs de recherche jouent ce rôle, sans que l'utilisateur comprenne la différence. Peu d'entre eux savent qu'un nom de domaine, ce n'est pas comme un terme tapé dans un moteur de recherche. On voit aussi bien des gens taper un nom de domaine dans la boîte de saisie du terme de recherche, que des gens utiliser le moteur de recherche comme fournisseurs d'identificateurs (« pour voir notre site Web, tapez "trucmachin" dans Google »). Le dernier clou dans le cercueil de la compréhension de la différence entre identificateur et moteur de recherche a été planté quand les navigateurs ont commencé à fusionner barre d'adresses et boite de saisie de la recherche.


Téléchargez le RFC 8324


L'article seul

RFC 8335: PROBE: A Utility For Probing Interfaces

Date de publication du RFC : Février 2018
Auteur(s) du RFC : R. Bonica (Juniper), R. Thomas (Juniper), J. Linkova (Google), C. Lenart (Verizon), M. Boucadair (Orange)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF intarea
Première rédaction de cet article le 23 février 2018


Pour tester qu'une machine est bien joignable, vous utilisez ping ou, plus rigoureusement, vous envoyez un message ICMP de type echo, auquel la machine visée va répondre avec un message ICMP echo reply. Ce test convient souvent mais il a plusieurs limites. L'une des limites de ce test est qu'il ne teste qu'une seule interface réseau de la machine, celle par laquelle vous lui parlez (deux interfaces, dans certains cas de routage asymétrique). Si la machine visée est un gros routeur avec plein d'interfaces réseau, le test ne vous dira pas si toutes fonctionnent. D'où cette extension aux messages ICMP permettant de spécifier l'interface qu'on veut vérifier.

A priori, ce RFC ne s'intéresse qu'aux routeurs, les serveurs n'ayant souvent qu'une seule interface réseau. La nouvelle technique, nommée PROBE, n'a pas de vocation générale, contrairement à ping, et concernera surtout les administrateurs réseau. D'autant plus que, comme elle est assez indiscrète, elle ne sera a priori pas ouverte au public. Notez qu'elle permet non seulement de tester une autre interface du routeur, mais également une interface d'une machine directement connectée au routeur. Les scénarios d'usage proposés sont exposés dans la section 5, une liste non limitative de cas où ping ne suffit pas :

  • Interface réseau non numérotée (pas d'adresse, ce qui est relativement courant sur les routeurs),
  • Interface réseau numérotée de manière purement locale (par exemple adresse IPv6 link-local),
  • Absence de route vers l'interface testée (si on veut tester l'interface d'un routeur qui fait face à un point d'échange, et que le préfixe du point d'échange n'est pas annoncé par le protocole de routage, ce qui est fréquent).

En théorie, SNMP pourrait servir au moins partiellement à ces tests mais, en pratique, c'est compliqué.

ping, la technique classique, est très sommairement décrit dans le RFC 2151, section 3.2, mais sans indiquer comment il fonctionne. La méthodologie est simple : la machine de test envoie un message ICMP Echo (type 8 en IPv4 et 128 en IPv6) à la machine visée (l'amer). L'amer répond avec un Echo Reply (type 0 en IPv4 et 129 en IPv6). La réception de cet Echo Reply indique que la liaison marche bien dans les deux sens. La non-réception indique d'un problème s'est produit, mais on n'en sait pas plus (notamment, on ne sait pas si le problème était à l'aller ou bien au retour). Ici, on voit le test effectué par une sonde Atlas sur l'amer 2605:4500:2:245b::42 (l'un des serveurs hébergeant ce blog), vu par tshark :

13.013422 2a02:1811:c13:1902:1ad6:c7ff:fe2a:6ac → 2605:4500:2:245b::42 ICMPv6 126 Echo (ping) request id=0x0545, seq=1, hop limit=56
13.013500 2605:4500:2:245b::42 → 2a02:1811:c13:1902:1ad6:c7ff:fe2a:6ac ICMPv6 126 Echo (ping) reply id=0x0545, seq=1, hop limit=64 (request in 11)
    

ICMP est normalisé dans les RFC 792 pour IPv4 et RFC 4443 pour IPv6. L'exemple ci-dessus montre un test classique, avec une requête et une réponse.

Notre RFC parle d'« interface testée » (probed interface) et d'« interface testante » (probing interface). Dans l'exemple ci-dessus, l'interface Ethernet de l'Atlas était la testante et celle du serveur était la testée. Le succès du test montre que les deux interfaces sont actives et peuvent se parler.

Au contraire de ping, PROBE va envoyer le message, non pas à l'interface testée mais à une interface « relais » (proxy). Celle-ci répondra si l'interface testée fonctionne bien (état oper-status, cf. RFC 7223). Si l'interface testée n'est pas sur le nœud qui sert de relais, ce dernier détermine l'état de cette interface en regardant la table ARP (RFC 826) ou NDP (RFC 4861). Aucun test actif n'est effectué, l'interface est considérée comme active si on lui a parlé récemment (et donc si l'adresse IP est dans un cache). PROBE utilise, comme ping, ICMP. Il se sert des messages ICMP structurés du RFC 4884. Une des parties du message structuré sert à identifier l'interface testée.

L'extension à ICMP Extended Echo est décrite en section 2 du RFC. Le type de la requête est 42 pour IPv4 et 160 pour IPv6 (enregistré à l'IANA, pour IPv4 et IPv6). Parmi les champs qu'elle comprend (les deux premiers existent aussi pour l'ICMP Echo traditionnel) :

  • Un identificateur qui peut servir à faire correspondre une réponse à une requête (ICMP, comme IP, n'a pas de connexion ou de session, chaque paquet est indépendant), 0x0545 dans l'exemple vu plus haut avec tshark,
  • Un numéro de séquence, qui peut indiquer les paquets successifs d'un même test, 1 dans l'exemple vu plus haut avec tshark
  • Un bit nommé L (local) qui indique si l'interface testée est sur le nœud visé par le test ou non,
  • Une structure qui indique l'interface testée.

Cette structure suit la forme décrite dans la section 7 du RFC 4884. Elle contient un objet d'identification de l'interface. L'interface qu'on teste peut être désignée par son adresse IP (si elle n'est pas locale - bit L à zéro, c'est la seule méthode acceptée), son nom ou son index. Notez que l'adresse IP identifiant l'adresse testée n'est pas forcément de la même famille que celle du message ICMP. On peut envoyer en IPv4 un message ICMP demandant à la machine distante de tester une interface IPv6.

Plus précisément, l'objet d'identification de l'interface est composé, comme tous les objets du RFC 4884, d'un en-tête et d'une charge utile. L'en-tête contient les champs :

  • Un numéro de classe, 3, stocké à l'IANA,
  • Un numéro indiquant comment l'interface testée est désignée (1 = par nom, cf. RFC 7223, 2 = par index, le même qu'en SNMP, voir aussi le RFC 7223, section 3, le concept de if-index, et enfin 3 = par adresse),
  • La longueur des données.

L'adresse est représentée elle-même par une structure à trois champs, la famille (4 pour IPv4 et 6 pour IPv6), la longueur et la valeur de l'adresse. Notez que le RFC 5837 a un mécanisme de description de l'interface, portant le numéro de classe 2, et utilisé dans un contexte proche.

La réponse à ces requêtes a le type 43 en IPv4 et 161 en IPv6 (section 3 du RFC). Elle comprend :

  • Un code (il valait toujours 0 pour la requête) qui indique le résultat du test : 0 est un succès, 1 signale que la requête était malformée, 2 que l'interface à tester n'existe pas, 3 qu'il n'y a pas de telle entrée dans la table des interfaces, et 4 que plusieurs interfaces correspondent à la demande (liste complète dans un registre IANA),
  • Un identificateur, copié depuis la requête,
  • Un numéro de séquence, copié depuis la requête,
  • Un état qui donne des détails en cas de code 0 (autrement, pas besoin de détails) : si l'interface testée n'est pas locale, l'état vaut 2 si l'entrée dans le cache ARP ou NDP est active, 1 si elle est incomplète (ce qui indique typiquement que l'interface testée n'a pas répondu), 3 si elle n'est plus à jour, etc,
  • Un bit A (active) qui est mis à un si l'interface testée est locale et fonctionne,
  • Un bit nommé 4 (pour IPv4) qui indique si IPv4 tourne sur l'interface testée,
  • Un bit nommé 6 (pour IPv6) qui indique si IPv6 tourne sur l'interface testée.

La section 4 du RFC détaille le traitement que doit faire la machine qui reçoit l'ICMP Extended Echo. D'abord, elle doit jeter le paquet (sans répondre) si ICMP Extended Echo n'est pas explicitement activé (rappelez-vous que ce service est assez indiscret, cf. section 8 du RFC) ou bien si l'adresse IP de la machine testante n'est pas autorisée (même remarque). Si les tests sont passés et que la requête est acceptée, la machine réceptrice fabrique une réponse : le code est mis à 1 si la requête est anormale (pas de partie structurée par exemple), 2 si l'interface testée n'existe pas, 3 si elle n'est pas locale et n'apparait pas dans les tables (caches) ARP ou NDP. Si on trouve l'interface, on la teste et on remplit les bits A, 4, 6 et l'état, en fonction de ce qu'on trouve sur l'interface testée.

Reste la question de la sécurité (section 8 du RFC). Comme beaucoup de mécanismes, PROBE peut être utilisé pour le bien (l'administrateur réseaux qui détermine l'état d'une interface d'un routeur dont il s'occupe), mais aussi pour le mal (chercher à récolter des informations sur un réseau avant une attaque, par exemple, d'autant plus que les noms d'interfaces dans les routeurs peuvent être assez parlants, révélant le type de réseau, le modèle de routeur…) Le RFC exige donc que le mécanisme ICMP Extended Echo ne soit pas activé par défaut, et soit configurable (liste blanche d'adresses IP autorisées, permission - ou non - de tester des interfaces non locales, protection des différents réseaux les uns contre les autres, si on y accueille des clients différents…) Et, bien sûr, il faut pouvoir limiter le nombre de messages.

Ne comptez pas utilise PROBE tout de suite. Il n'existe apparemment pas de mise en œuvre de ce mécanisme publiée. Juniper en a réalisé une mais elle n'apparait encore dans aucune version de JunOS.


Téléchargez le RFC 8335


L'article seul

RFC 8315: Cancel-Locks in Netnews articles

Date de publication du RFC : Février 2018
Auteur(s) du RFC : M. Bäuerle (STZ Elektronik)
Chemin des normes
Première rédaction de cet article le 14 février 2018


Cela peut sembler étonnant, mais le service des News fonctionne toujours. Et il est régulièrement perfectionné. Ce nouveau RFC normalise une extension au format des articles qui permettra de sécuriser un petit peu l'opération d'annulation d'articles.

Une fois qu'un article est lancé sur un réseau social décentralisé, comme Usenet (RFC 5537), que faire si on le regrette ? Dans un système centralisé comme Twitter, c'est simple, on s'authentifie, on le supprime et plus personne ne le voit. Mais dans un réseau décentralisé, il faut encore propager la demande de suppression (d'annulation, sur les News). Et cela pose évidemment des questions de sécurité : il ne faut pas permettre aux méchants de fabriquer trop facilement une demande d'annulation. Notre RFC propose donc une mesure de sécurité, l'en-tête Cancel-Lock:.

Cette mesure de sécurité est simple, et ne fournit certainement pas une sécurité de niveau militaire. Pour la comprendre, il faut revenir au mécanisme d'annulation d'un article d'Usenet. Un article de contrôle est un article comme les autres, envoyé sur Usenet, mais il ne vise pas à être lu par les humains, mais à être interprété par le logiciel. Un exemple d'article de contrôle est l'article de contrôle d'annulation, défini dans le RFC 5337, section 5.3. Comme son nom l'indique, il demande la suppression d'un article, identifié par son Message ID. Au début d'Usenet, ces messages de contrôle n'avaient aucune forme d'authentification. On a donc vu apparaitre des faux messages de contrôle, par exemple à des fins de censure (supprimer un article qu'on n'aimait pas). Notre nouveau RFC propose donc qu'un logiciel proche de la source du message mette un en-tête Cancel-Lock: qui indique la clé qui aura le droit d'annuler le message.

Évidemment, ce Cancel-Lock: n'apporte pas beaucoup de sécurité, entre autre parce qu'un serveur peut toujours le retirer et mettre le sien, avant de redistribuer (c'est évidemment explicitement interdit par le RFC mais il y a des méchants). Mais cela ne change de toute façon pas grand'chose à la situation actuelle, un serveur peut toujours jeter un article, de toute façon. Si on veut quand même une solution de sécurité « sérieuse », il faut utiliser PGP, comme mentionné en passant par le RFC 5537 (mais jamais normalisé dans un RFC).

La section 2 du RFC décrit en détail le mécanisme de sécurité. La valeur de l'en-tête Cancel-Lock: est l'encodage en base64 d'une condensation d'une clé secrète (en fait, on devrait plutôt l'appeler mot de passe). Pour authentifier une annulation, le message de contrôle comportera un autre en-tête, Cancel-Key:, qui révélera la clé (qui ne devra donc être utilisée qu'une fois).

Voici un exemple. On indique explicitement l'algorithme de condensation (ici, SHA-256, la liste est dans un registre IANA). D'abord, le message original aura :

Cancel-Lock: sha256:s/pmK/3grrz++29ce2/mQydzJuc7iqHn1nqcJiQTPMc=
    

Et voici le message de contrôle, authentifié :

Cancel-Key: sha256:qv1VXHYiCGjkX/N1nhfYKcAeUn8bCVhrWhoKuBSnpMA=
    

La section 3 du RFC détaille comment on utilise ces en-têtes. Le Cancel-Lock: peut être mis par l'auteur originel de l'article, ou bien par un intermédiaire (par exemple le modérateur qui a approuvé l'article). Plusieurs Cancel-Lock: peuvent donc être présents. Notez qu'il n'y a aucun moyen de savoir si le Cancel-Lock: est « authentique ». Ce mécanisme est une solution de sécurité faible.

Pour annuler un message, on envoie un message de contrôle avec un Cancel-Key: correspondant à un des Cancel-Lock:. Les serveurs recevant ce message de contrôle condenseront la clé (le mot de passe) et vérifieront s'ils retombent bien sur le condensat contenu dans un des Cancel-Lock:.

La section 4 donne les détails sur le choix de la clé (du mot de passe). Évidemment, elle doit être difficile à deviner, donc plutôt choisie par un algorithme pseudo-aléatoire (et pas "azerty123"). Et elle doit être à usage unique puisque, une fois révélée par un Cancel-Key:, elle n'est plus secrète. L'algorithme recommandé par le RFC est d'utiliser un HMAC (RFC 2104) d'un secret et de la concaténation du Message ID du message avec le nom de l'utilisateur. Comme cela, générer un Cancel-Key: pour un message donné peut se faire avec juste le message, sans avoir besoin de mémoriser les clés. Voici un exemple, tiré de la section 5, et utilisant OpenSSL. Le secret est frobnicateZ32. Le message est le <12345@example.net> et l'utilisateur est stephane :

      
% printf "%s" "<12345@example.net>stephane" \
        | openssl dgst -sha256 -hmac "frobnicateZ32" -binary \
        | openssl enc -base64
f0rHwfZXp5iKFjTbX/I5bQXh9Dta33nWBzLi8f9oaoM=

    

Voilà, nous avons notre clé, f0rHwfZXp5iKFjTbX/I5bQXh9Dta33nWBzLi8f9oaoM=. Pour le condensat, nous nous servirons de SHA-256 :


% printf "%s" "f0rHwfZXp5iKFjTbX/I5bQXh9Dta33nWBzLi8f9oaoM=" \
        | openssl dgst -sha256 -binary \
        | openssl enc -base64
RBJ8ZsgqBnW/tYT/qu1JcXK8SA2O9g+qJLDzRY5h1cg=	
   
    

Nous pouvons alors former le Cancel-Lock: :

Cancel-Lock: sha256:RBJ8ZsgqBnW/tYT/qu1JcXK8SA2O9g+qJLDzRY5h1cg=
    

Et, si nous voulons annuler ce message, le Cancel-Key: dans le message de contrôle d'annulation aura l'air :

Control: cancel <12345@example.net>
Cancel-Key: sha256:f0rHwfZXp5iKFjTbX/I5bQXh9Dta33nWBzLi8f9oaoM=
    

Pour vérifier ce message de contrôle, le logiciel calculera le condensat de la clé et vérifiera s'il retombe bien sur RBJ8ZsgqBnW/tYT/qu1JcXK8SA2O9g+qJLDzRY5h1cg=.

Enfin, la section 7 du RFC détaille la sécurité de ce mécanisme. Cette sécurité est plutôt faible :

  • Aucune protection de l'intégrité. Un intermédiaire a pu modifier, ajouter ou supprimer le Control-Lock:. Si cela vous défrise, vous devez utiliser PGP.
  • Lors d'une annulation, la clé est visible par tous, donc elle peut être copiée et utilisée dans un message de contrôle de remplacement (au lieu de l'annulation). Mais, de toute façon, un attaquant peut aussi bien faire un nouveau message faux (Usenet ne vérifie pas grand'chose).
  • Avant ce RFC, ce mécanisme était déjà largement utilisé, depuis longtemps, et souvent en utilisant SHA-1 comme fonction de condensation. Contrairement à ce qu'on lit parfois, SHA-1 n'est pas complètement cassé : il n'y a pas encore eu de publication d'une attaque pré-image pour SHA-1 (seulement des collisions). Néanmoins, SHA-1 ne peut plus être considéré comme sûr, d'autant plus que Usenet évolue très lentement : un logiciel fait aujourd'hui va rester en production longtemps et, avec le temps, d'autres attaques contre SHA-1 apparaitront. D'où la recommandation du RFC de n'utiliser que SHA-2.

Les deux nouveaux en-têtes ont été ajoutés au registre des en-têtes.

À noter que, comme il n'y a pas de groupe de travail IETF sur les News, ce RFC a été surtout discuté… sur les News, en l'occurrence les groupes news.software.nntp et de.comm.software.newsserver. Comme ce RFC décrit une technique ancienne, il y a déjà de nombreuses mises en œuvre comme la bibliothèque canlock (paquetage Debian libcanlock2), dans le serveur INN, ou les clients News Gnus (regardez cet article sur son usage), flnews, slrn ou tin. Vous pouvez aussi lire l'article de Brad Templeton comparant Cancel-Lock: aux signatures.

Merci à Julien Élie pour sa relecture.


Téléchargez le RFC 8315


L'article seul

Meltdown & Spectre

First publication of this article on 10 February 2018


I didn't write about the hardware security vulnerabilities Meltdown and Spectre but André Sintzoff did and he asked for a place to put this online so, I host it here.

You can read his good summary (in English) of Meltdown and Spectre in the following formats:


L'article seul

RFC 8312: CUBIC for Fast Long-Distance Networks

Date de publication du RFC : Février 2018
Auteur(s) du RFC : I. Rhee (NCSU), L. Xu (UNL), S. Ha (Colorado), A. Zimmermann, L. Eggert (NetApp), R. Scheffenegger
Pour information
Réalisé dans le cadre du groupe de travail IETF tcpm
Première rédaction de cet article le 8 février 2018


Longtemps après sa mise au point et son déploiement massif sur Linux, voici la description officielle de l'algorithme CUBIC, un algorithme de contrôle de la congestion dans TCP.

CUBIC doit son nom au fait que la fonction de calcul de la fenêtre d'envoi des données est une fonction cubique (elle a un terme du troisième degré) et non pas linéaire. CUBIC est l'algorithme utilisé par défaut dans Linux depuis pas mal d'années :

% sudo sysctl net.ipv4.tcp_congestion_control
net.ipv4.tcp_congestion_control = cubic
    

CUBIC est plus énergique lorsqu'il s'agit d'agrandir la fenêtre d'envoi de données, lorsque le réseau a une grande capacité mais un RTT important. Dans le cas de ces réseaux « éléphants » (terme issu de la prononciation en anglais de LFN, Long and Fat Network, voir RFC 7323, section 1.1), le RTT élevé fait que l'émetteur TCP met du temps à recevoir les accusés de réception, et donc à comprendre que tout va bien et qu'il peut envoyer d'avantage de données, pour remplir le long tuyau. CUBIC permet d'accélérer cette phase.

Notez que CUBIC ne contrôle que l'émetteur, le récepteur est inchangé. Cela facilite le déploiement : un émetteur CUBIC peut parfaitement communiquer avec un récepteur traditionnel.

Avant de lire la suite du RFC, il est recommandé de (re)lire le RFC 5681, la bible sur le contrôle de congestion TCP, et notamment sur cette notion de fenêtre d'envoi (ou fenêtre de congestion).

TCP (RFC 793) a évidemment une mission difficile. L'intérêt de l'émetteur est d'envoyer le plus de données le plus vite possible. Mais à condition qu'elles arrivent sinon, s'il y a de la congestion, les données seront perdues et il faudra recommencer (ré-émettre). Et on n'est pas tout seul sur le réseau : il faut aussi tenir compte des autres, et chercher à partager équitablement l'Internet. L'algorithme doit donc être énergique (chercher à utiliser les ressources au maximum) mais pas bourrin (il ne faut pas dépasser le maximum), tout en étant juste (on n'est pas dans la startup nation, il ne faut pas écraser les autres, mais partager avec eux).

Le problème des éléphants, des réseaux à fort BDP, est connu depuis longtemps (article de T. Kelly, « Scalable TCP: Improving Performance in HighSpeed Wide Area Networks », et RFC 3649.) Dans ces réseaux, TCP tend à être trop prudent, à ouvrir sa fenêtre (les données qu'on peut envoyer tout de suite) trop lentement. Cette prudence l'honore, mais peut mener à des réseaux qui ne sont pas utilisés à fond. L'article de Ha, S., Kim, Y., Le, L., Rhee, I., et L. Xu, « A Step toward Realistic Performance Evaluation of High-Speed TCP Variants » expose ce problème. Il touche toutes les variantes de TCP depuis le TCP Reno décrit dans le RFC 5681 : le New Reno des RFC 6582 et RFC 6675, et même des protocoles non-TCP mais ayant le même algorithme, comme UDP (TFRC, RFC 5348) ou SCTP (RFC 4960).

CUBIC a été originellement documenté dans l'article de S. Ha, Injong Rhee, et Lisong Xu, « CUBIC: A New TCP-Friendly High-Speed TCP Variant », en 2008. Sur Linux, il a remplacé BIC pour les réseaux à haut BDP.

La section 3 du RFC rappelle les principes de conception de CUBIC, notamment :

  • Utilisation de la partie concave (la fenêtre s'agrandit rapidement au début puis plus lentement ensuite) et de la partie convexe de la fonction, et pas seulement la partie convexe (on ouvre la fenêtre calmement puis on accélère), comme l'ont tenté la plupart des propositions alternatives. Si vous avez du mal avec les termes concave et convexe, la figure 2 de cet article de comparaison de CUBIC et BIC illustre bien, graphiquement, ces concepts. La courbe est d'abord concave, puis convexe.
  • Comportement identique à celui de ses prédécesseurs pour les liaisons à faible RTT (ou faible BDP). Les algorithmes TCP traditionnels n'ont en effet pas de problème dans ce secteur (cf. section 4.2, et Floyd, S., Handley, M., et J. Padhye, « A Comparison of Equation-Based and AIMD Congestion Control »). « Si ce n'est pas cassé, ne le réparez pas. » CUBIC ne se différencie donc des autres algorithmes que pour les réseaux à RTT élevé, ce que rappelle le titre de notre RFC.
  • Juste partage de la capacité entre des flots ayant des RTT différents.
  • CUBIC mène à un agrandissement plus rapide de la fenêtre d'envoi, mais également à une réduction moins rapide lorsqu'il détecte de la congestion (paramètre « beta_cubic », le facteur de réduction de la fenêtre, voir aussi le RFC 3649.)

La section 4 du RFC spécifie précisement l'algorithme, après beaucoup de discussion avec les développeurs du noyau Linux (puisque le code a été écrit avant le RFC). Cette section est à lire si vous voulez comprendre tous les détails. Notez l'importance du point d'inflexion entre la partie concave et la partie convexe de la courbe qui décrit la fonction de changement de taille de la fenêtre. Ce point d'inflexion est mis à la valeur de la fenêtre d'envoi juste avant la dernière fois où TCP avait détecté de la congestion.

Notez que Linux met en outre en œuvre l'algorithme HyStart, décrit dans « Taming the Elephants: New TCP Slow Start ». Hystart mesure le RTT entre émetteur et récepteur pour détecter (par l'augmentation du RTT) un début de congestion avant que des pertes de paquets se produisent. (Merci à Lucas Nussbaum pour l'information.)

La section 5 analyse le comportement CUBIC selon les critères de comparaison des algorithmes de contrôle de la congestion décrits dans le RFC 5033.

Pour finir, voici une intéressante comparaison des algorithmes de contrôle de congestion.


Téléchargez le RFC 8312


L'article seul

Articles des différentes années : 2018  2017  2016  2015  2014  2013  2012  Précédentes années

Syndication : en HTTP non sécurisé, Flux Atom avec seulement les résumés et Flux Atom avec tout le contenu, en HTTPS, Flux Atom avec seulement les résumés et Flux Atom avec tout le contenu.