Je suis Charlie

Autres trucs

Accueil

Seulement les RFC

Seulement les fiches de lecture

Ève

Les RFC (Request For Comments) sont les documents de référence de l'Internet. Produits par l'IETF pour la plupart, ils spécifient des normes, documentent des expériences, exposent des projets...

Leur gratuité et leur libre distribution ont joué un grand rôle dans le succès de l'Internet, notamment par rapport aux protocoles OSI de l'ISO organisation très fermée et dont les normes coûtent cher.

Je ne tente pas ici de traduire les RFC en français (un projet pour cela existe mais je n'y participe pas, considérant que c'est une mauvaise idée), mais simplement, grâce à une courte introduction en français, de donner envie de lire ces excellents documents. (Au passage, si vous les voulez présentés en italien...)

Le public visé n'est pas le gourou mais l'honnête ingénieur ou l'étudiant.


RFC 8246: HTTP Immutable Responses

Date de publication du RFC : Septembre 2017
Auteur(s) du RFC : P. McManus (Mozilla)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF httpbis
Première rédaction de cet article le 16 septembre 2017


Lorsqu'un serveur HTTP renvoie une réponse à un client, il peut indiquer une durée de vie maximale de la ressource transmise, avec l'en-tête Cache-Control: (RFC 7234). Mais cela ne donne qu'une durée maximale. La ressource peut quand même être modifiée avant la fin de cette période. Un client HTTP prudent va donc revalider la fraîcheur de cette ressource de temps en temps. L'extension décrite dans ce RFC permet de se dispenser de cette revalidation, en indiquant une durée minimale, pendant laquelle on est sûrs et certains que la ressource ne sera pas modifiée.

Le RFC prend l'exemple (section 1) d'un journal dont la page d'accueil indique une durée de vie maximale d'une heure :

Cache-Control: max-age=3600
    

Le client HTTP qui reçoit cet en-tête dans la réponse sait qu'il doit recontacter le serveur au bout d'une heure. Mais la page sera peut-être modifiée (par exemple en raison d'un évènement soudain et imprévu) avant qu'une heure soit écoulée. Le client est donc partagé entre la revalidation (qui risque de consommer des ressources pour rien, même si elle est moins coûteuse qu'un téléchargement complet, grâce aux trucs du RFC 7232) et le risque de servir à son utilisateur une ressource qui n'est désormais plus à jour. Le problème est d'autant plus ennuyeux que la revalidation d'une bête page Web qui comprend des photos peut générer beaucoup de requêtes, dont la plupart produiront sans doute un 304 (ressource non modifiée, la revalidation était inutile).

Notez que dans certains cas, le contenu pointé par un URL peut changer, mais dans d'autres cas, il est réellement immuable. Par exemple, si on publie chaque version de sa feuille de style sous un URL différent, la CSS n'a pas besoin d'être revalidée.

Bref, il y avait un besoin de pouvoir indiquer l'immuabilité d'une ressource. C'est désormais fait (section 2 de ce RFC) avec une extension à Cache-Control: :

Cache-Control: max-age=3600, immutable
    

Avec le mot-clé immutable, le serveur indique que la ressource ne sera pas modifiée pendant la durée de vie indiquée, le client peut donc se dispenser de vérifier. (« Client » ici désignant aussi bien le client final, par exemple le navigateur Web, qu'un intermédiaire.)

Par exemple, comme les RFC sont immuables (on ne les change jamais même d'une virgule, même en cas d'erreur), la ressource qui désigne ce RFC, https://www.rfc-editor.org/rfc/rfc8246.txt, pourrait parfaitement renvoyer cet en-tête (elle ne le fait pas). Cela pourrait être :

Last-Modified: Thu, 14 Sep 2017 23:11:35 GMT
Cache-Control: max-age=315576000, immutable 
    

(Oui, dix ans…)

Voilà, c'est tout, la directive a été ajoutée au registre IANA. Mais la section 3 du RFC se penche encore sur quelques questions de sécurité. Indiquer qu'une ressource est immuable revient à la fixer pour un temps potentiellement très long, et cela peut donc servir à pérenniser une attaque. Si un méchant pirate un site Web, et sert son contenu piraté avec un en-tête d'immuabilité, il restera bien plus longtemps dans les caches. Pire, sans HTTPS, l'en-tête avec immutable pourrait être ajouté par un intermédiaire (le RFC déconseille donc de tenir compte de cette option si on n'a pas utilisé HTTPS).

Les navigateurs Web ont souvent deux options pour recharger une page, « douce » et « dure » (F5 et Contrôle-F5 dans Firefox sur Unix). Le RFC conseille que, dans le second cas (rechargement forcé), le immutable soit ignoré (afin de pouvoir recharger une page invalide).

Enfin, toujours question sécurité, le RFC recommande aux clients HTTP de ne tenir compte de l'en-tête d'immuabilité que s'ils sont sûrs que la ressource a été transmise proprement (taille correspondant à Content-Length: par exemple).

Si vous voulez comparer deux ressources avec et sans immutable, regardez http://www.bortzmeyer.org/files/maybemodified.txt (sans immutable) et http://www.bortzmeyer.org/files/forever.txt (avec). Si le client HTTP gère l'extension d'immuabilité, un rechargement « doux » ne fera pas de requête HTTP. Sinon, il y aura revalidation et le serveur HTTP renverra un 304 :

[2001:db8:abcd:1234:acd8:9bd0:27c9:3a7f]:45452 - - [16/Sep/2017:17:53:29 +0200] "GET /files/forever.txt HTTP/1.1" 304 - "-" "Mozilla/5.0 (X11; Linux i686; rv:52.0) Gecko/20100101 Firefox/52.0" www.bortzmeyer.org
    

Apparemment, Firefox gère cette extension mais, ici, le Firefox était sans doute trop vieux (normalement, cela aurait dû arriver avec la version 49, puisque Mozilla était premier intéressé). Les auteurs de Squid ont annoncé qu'ils géreraient cette extension. Côté serveur, notons que Facebook envoie déjà cette extension pour, par exemple, le code JavaScript (qui est versionné et donc jamais changé) :


% curl -v https://www.facebook.com/rsrc.php/v3iCKe4/y2/l/fr_FR/KzpL-Ycd5sN.js
* Connected to www.facebook.com (2a03:2880:f112:83:face:b00c:0:25de) port 443 (#0)
...
< HTTP/2 200 
< content-type: application/x-javascript; charset=utf-8
< cache-control: public,max-age=31536000,immutable
...

    

Idem pour une mise en œuvre d'IPFS.


Téléchargez le RFC 8246


L'article seul

RFC 8240: Report from the Internet of Things (IoT) Software Update (IoTSU) Workshop 2016

Date de publication du RFC : Septembre 2017
Auteur(s) du RFC : H. Tschofenig (ARM Limited), S. Farrell (Trinity College Dublin)
Pour information
Première rédaction de cet article le 12 septembre 2017


La mode des objets connectés a mené à l'existence de nombreux « objets », qui sont en fait des ordinateurs (avec leurs problèmes, comme le fait que leur logiciel ait des failles de sécurité), mais qui ne sont pas considérés comme des ordinateurs par leurs propriétaires, et ne sont donc pas gérés (pas d'administrateur système, pas de mises à jour des logiciels). L'attaque contre Dyn du 21 octobre 2016, apparemment menée par ces objets, a bien illustré le risque que cette profusion irresponsable crée. Ce nouveau RFC est le compte-rendu d'un atelier sur la mise à jour des objets connectés, atelier de réflexion qui s'est tenu à Dublin les 13 et 14 juin 2016. Il fait le point sur la (difficile) question.

La question de base était « que peut-on faire pour que ces foutus objets soient mis à jour, au moins pour patcher leurs failles de sécurité ? » L'atelier réuni à Trinity College n'a évidemment pas fourni une réponse parfaite, mais a au moins permis de clarifier le problème. Il me semble toutefois, d'après le compte-rendu, qu'il y avait un gros manque : les droits du propriétaire de l'objet. La plupart des solutions discutées tournaient autour de l'idée de mises à jour systématiques et automatiques du logiciel via les serveurs du vendeur, et les éventuelles conséquences néfastes pour le propriétaire (comme l'arrivée de nouvelles fonctions de surveillance, par exemple) ne sont guère mentionnées.

Aujourd'hui, un grand nombre des machines ayant accès, même indirect, à l'Internet, est composé de trucs qualifiés d'objets, qui ont en commun qu'on ne les appelle pas « ordinateurs » (alors que c'est bien cela qu'ils sont). Ces objets sont très divers, allant d'engins qui ont les capacités matérielles d'un ordinateur (une télévision connectée, par exemple) à des petits machins très contraints (CPU et mémoire limités, batterie à la capacité finie, etc). Le risque que font peser ces objets « irresponsables » (pas gérés, pas supervisés) sur l'Internet est connu depuis longtemps. Le RFC cite l'article de Schneier, « The Internet of Things Is Wildly Insecure And Often Unpatchable », qui tirait la sonnette d'alarme en 2014. Il notait que le logiciel de ces objets n'était déjà plus à jour quand l'objet était sorti de sa boite la première fois (les fabricants d'objets connectés aiment bien utiliser des versions antédiluviennes des bibliothèques). Or, des objets peuvent rester branchés et actifs pendant des années, avec leur logiciel dépassé et jamais mis à jour, plein de failles de sécurité que les craqueurs ne vont pas manquer d'exploiter (cf. le logiciel Mirai).

Donc, le problème est connu depuis des années. Mais il n'est pas facile à résoudre :

  • Le mécanisme de mise à jour peut lui-même être une faille de sécurité. Par exemple, un certain nombre d'objets font la mise à jour de leur logiciel en HTTP, sans signature sur le code récupéré, rendant ainsi une attaque de l'homme du milieu triviale.
  • Le RFC n'en parle guère, mais, même si on vérifie le code récupéré, celui-ci peut être malveillant. De nombreuses compagnies (par exemple Sony) ont déjà délibérement distribué du malware à leurs clients, et sans conséquences pénales. Une mise à jour automatique pourrait par exemple installer une porte dérobée, ou bien mettre du code DRM nouveau.
  • Les problèmes opérationnels ne manquent pas. Par exemple, si les objets vérifient le code récupéré via une signature, et qu'ils comparent à une clé publique qu'ils détiennent, que faire si la clé privée correspondante est perdue ou copiée ? (Cf. « Winks Outage Shows Us How Frustrating Smart Homes Could Be. »)
  • Si les objets se connectent automatiquement au serveur pour chercher des mises à jour, cela pose un sérieux problème de vie privée. (Le RFC ne rappelle pas qu'en outre, la plupart de ces objets sont de terribles espions qu'on installe chez soi.)
  • Pour une société à but lucratif, gérer l'infrastructure de mise à jour (les serveurs, la plate-forme de développement, les mises à jour du code, la gestion des éventuels problèmes) a un coût non nul. Il n'y a aucune motivation financière pour le faire, la sécurité ne rapportant rien. (Le RFC s'arrête à cette constatation, ne mentionnant pas la solution évidente : des règles contraignantes obligeant les entreprises à le faire. Le Dieu Marché ne sera certainement pas une solution.)
  • Si l'entreprise originale défaille, qui va pouvoir et devoir assurer ses mises à jour ? (Repensons à l'ex-chouchou des médias, le lapin Nabaztag, et à son abandon par la société qui l'avait vendu.) Si le RFC ne le mentionne pas, il va de soi que le logiciel libre est la solution au problème du « pouvoir » mais pas à celui du « devoir » (dit autrement, le logiciel libre est nécessaire mais pas suffisant).

Le risque n'est donc pas seulement de l'absence de système de mise à jour. Il peut être aussi d'un système de mise à jour bogué, vulnérable, ou non documenté, donc non maintenable.

Le problème de la mise à jour automatique des logiciels est évidemment ancien, et plusieurs systèmes d'exploitation ont des solutions opérationnelles depuis un certain temps (comme pacman ou aptitude). Le RFC se focalise donc sur les objets les plus contraints, ceux limités dans leurs capacités matérielles, et donc dans les logiciels qu'ils peuvent faire tourner.

Après cette introduction, le RFC fait un peu de terminologie, car le choix des mots a suscité une discussion à l'atelier. D'abord, la notion de classe. Les « objets connectés » vont de systèmes qui ont les capacités matérielles et l'alimentation électrique d'un ordinateur de bureau (une télévision connectée, par exemple) et qui peuvent donc utiliser les mêmes techniques, jusqu'à des objets bien plus contraints dans leurs capacités. Pour prendre un exemple chez les systèmes populaires auprès des geeks, un Raspberry Pi fait tourner un système d'exploitation « normal » et se met à jour comme un ordinateur de bureau, un Arduino ne le peut typiquement pas. Il faudra donc sans doute développer des solutions différentes selon la classe. Ou, si on veut classer selon le type de processeur, on peut séparer les objets ayant plus ou moins l'équivalent d'un Cortex-A (comme le Pi) de ceux ayant plutôt les ressources du Cortex-M (comme l'Arduino, mais notez que cette catégorie est elle-même très variée).

Le RFC définit également dans cette section 2 la différence entre mise à jour du logiciel et mise à jour du firmware. La distinction importante est que les engins les plus contraints en ressources n'ont typiquement qu'une mise à jour du firmware, qui change tout, système et applications, alors que les engins de classe « supérieure » ont des mises à jour modulaires (on peut ne mettre à jour qu'une seule application).

Dernier terme à retenir, hitless (« sans impact »). C'est une propriété des mises à jour qui ne gênent pas le fonctionnement normal. Par exemple, s'il faut arrêter l'engin pour une mise à jour, elle ne sera pas hitless. Évidemment, la mise à jour du logiciel d'une voiture ne sera probablement pas hitless et nécessitera donc des précautions particulières.

Maintenant, le gros morceau du RFC, la section 3, qui regroupe notamment les exigences issues de l'atelier. C'est assez dans le désordre, et il y a davantage de questions que de réponses. Pour commencer, que devraient faire les fabricants d'objets connectés (en admettant qu'ils lisent les RFC et aient le sens des responsabilités, deux paris hasardeux) ? Par exemple, le RFC note que les mises à jour globales (on remplace tout) sont dangereuses et recommande que des mises à jour partielles soient possibles, notamment pour limiter le débit utilisé sur le réseau (comme avec bsdiff ou courgette). Idéalement, on devrait pouvoir mettre à jour une seule bibliothèque, mais cela nécessiterait du liage dynamique et de code indépendant de la position, ce qui peut être trop demander pour les plus petits objets. Mais au moins un système d'exploitation plutôt conçu pour les « classe M », les objets les plus contraints (équivalents au Cortex-M), le système Contiki, a bien un lieur dynamique.

Certains dispositifs industriels ont plusieurs processeurs, dont un seul gère la connexion avec le reste du monde. Il peut être préférable d'avoir une architecture où ce processeur s'occupe de la mise à jour du logiciel de ses collègues qui ne sont pas directement connectés.

Un problème plus gênant, car non exclusivement technique, est celui des engins qui ont plusieurs responsables potentiels. Si une machine sert à plusieurs fonctions, on risque d'avoir des cas où il n'est pas évident de savoir quel département de l'entreprise a « le dernier mot » en matière de mise à jour. Pour les ordinateurs, cette question sociale a été réglée depuis longtemps dans la plupart des organisations (par exemple en laissant le service informatique seul maître) mais les objets connectés redistribuent les cartes. Si le service Communication a une caméra connectée, qui peut décider de la mettre à jour (ou pas) ?

Un cas proche est celui où un appareil industriel inclut un ordinateur acheté à un tiers (avec le système d'exploitation). Qui doit faire la mise à jour ? Qui est responsable ? Pensons par exemple au problème d'Android où les mises à jour doivent circuler depuis Google vers le constructeur du téléphone, puis (souvent) vers l'opérateur qui l'a vendu. En pratique, on constate qu'Android est mal mis à jour. Et ce sera pire pour un réfrigérateur connecté puisque sa partie informatique sera fabriquée indépendamment, et avant le frigo complet. Lorsque celui-ci démarrera pour la première fois, son logiciel aura sans doute déjà plusieurs mois de retard.

Et la sécurité ? Imaginons un objet connecté dont le fabricant soit assez incompétent et assez irresponsable pour que les mises à jour se fassent en récupérant du code en HTTP, sans aucune authentification d'aucune sorte. Un tel objet serait très vulnérable à des attaques visant à remplacer le code authentique par un code malveillant. D'où l'exigence de DAO (Data Origin Authentication). Sans DAO, tout serait fichu. Deux solutions évidentes utilisent la cryptographie, authentifier le serveur qui distribue les mises à jour (par exemple avec HTTPS) ou bien authentifier le code téléchargé, via une signature numérique (notez que l'IETF a un format CMS pour cela, décrit dans le RFC 4108, mais qui semble peu utilisé.) Mais signer et vérifier est plus facile à dire qu'à faire ! D'abord, si la cryptographie n'est pas un problème pour les engins « classe A », comme une télévision connectée ou bien une voiture connectée, elle peut être bien coûteuse pour des objets plus limités. La cryptographie symétrique est typiquement moins coûteuse, mais bien moins pratique. Le problème de fond est que la cryptographie symétrique n'authentifie pas un envoyeur mais une classe d'envoyeurs (tous ceux qui ont la clé). Il faudrait donc une clé différente par objet, ce qui semble ingérable. Faut-il lister comme exigence de base d'utiliser la cryptographie asymétrique ?

Son coût en opérations de calcul n'est pas le seul problème. Par exemple, la clé privée qui signe les mises à jour peut être volée, ou bien tout simplement devenir trop faible avec les progrès de la cryptanalyse (certains objets peuvent rester en production pendans dix ans ou plus). Il faut donc un moyen de mettre la clé publique à jour. Comment le faire sans introduire de nouvelles vulnérabilités (imaginez un attaquant qui trouverait le moyen de subvertir ce mécanisme de remplacement de clé, et changerait la clé de signature pour la sienne). Bref, les méthodes « il n'y a qu'à… » du genre « il n'y a qu'à utiliser des signatures cryptographiques » ne sont pas des solutions magiques.

Et si l'objet utilise du code venant de plusieurs sources ? Faut-il plusieurs clés, et des règles compliquées du genre « l'organisation A est autorisée à mettre à jour les composants 1, 3 et 4 du système, l'organisation B peut mettre à jour 2 et 3 » ? (Les systèmes fermés sont certainement mauvais pour l'utilisateur, mais présentent des avantages en matière de sécurité : une seule source. Pensez à tous les débats autour de l'utilisation du magasin libre F-Droid, par exemple l'opinion de Whisper.)

Un problème plus fondamental est celui de la confiance : à qui un objet connecté doit-il faire confiance, et donc quelle clé publique utiliser pour vérifier les mises à jour ? Faire confiance à son propriétaire ? À son fabricant ? Au sous-traitant du fabricant ?

On n'en a pas fini avec les problèmes, loin de là. Les objets sont conçus pour être fabriqués et distribués en grande quantité. Cela va donc être un difficile problème de s'assurer que tous les objets dont on est responsable soient à jour. Imaginez une usine qui a des centaines, voire des milliers d'objets identiques, et qui veut savoir s'ils sont tous à la même version du logiciel.

On a parlé plus haut de confiance. On peut décider de faire confiance au fabricant d'un objet, parce qu'on juge l'organisation en question honnête et compétente. Mais cette évaluation ne s'étend pas forcément à la totalité de ses employés. Comment s'assurer qu'un employé méchant ne va pas compromettre le processus de mise à jour du logiciel, par exemple en se gardant une copie de la clé privée, ou bien en ajoutant aux objets produits une clé publique supplémentaire (il aurait alors une porte dérobée dans chaque objet, ce qui illustre bien le fait que la mise à jour est elle-même source de vulnérabilités).

On a parlé des risques pour la sécurité de l'objet connecté. Les précautions prises sont actuellement proches de zéro. Espérons que cela va s'améliorer. Mais, même en prenant beaucoup de précautions, des piratages se produiront parfois. Ce qui ouvre la question de la récupération : comment récupérer un objet piraté ? Si on a dix grille-pains compromis, va t-il falloir les reflasher tous les dix, manuellement ? (Avant cela, il y a aussi l'intéressante question de savoir comment détecter qu'il y a eu piratage, sachant que la quasi-totalité des organisations ne lisent pas les messages leur signalant des comportements suspects de leurs machines.)

La cryptographie apporte clairement des solutions intéressantes à bien des problèmes de sécurité. Mais elle nécessite en général une horloge bien à l'heure (par exemple pour vérifier la date d'expiration d'un certificat). Avoir une horloge maintenue par une batterie pendant l'arrêt de la machine et pendant les coupures de courant n'est pas trivial :

  • Cela coûte cher (la batterie et l'horloge peuvent coûter bien plus cher que le reste de l'objet),
  • C'est encombrant (certains objets sont vraiment petits),
  • Les batteries sont des équipements dangereux, en raison du risque d'incendie ou d'explosion, et leur présence impose donc de fortes contraintes au processus de fabrication, d'autant plus que les batteries vieillissent vite (pas question d'utiliser de vieux stocks),
  • Les batteries conçues pour la maison peuvent ne pas être adaptées, car, dans un environnement industriel, les conditions sont rudes (la température peut facilement excéder les limites d'une batterie ordinaire),
  • Cela ne dure pas longtemps : la présence d'une batterie peut sérieusement raccourcir la durée de vie d'un objet connecté.

Il n'est donc pas évident qu'il y ait une bonne solution à ce problème. (Le RFC cite Roughtime comme une approche prometteuse.)

Et si on a une bonne solution pour distribuer les mises à jour à des milliers ou des millions d'objets connectés, comment ceux-ci vont-ils être informés de l'existence d'une mise à jour. Push ou pull ? Envoyer les mises à jour depuis le serveur est la solution la plus rapide mais elle peut être délicate si l'objet est derrière un pare-feu qui interdit les connexions entrantes (il faudrait que l'objet contacte le serveur de mise à jour, et reste connecté). Et le cas d'objets qui ne sont pas joignables en permanence complique les choses. De l'autre côté, le cas où l'objet contacte le serveur de temps en temps pour savoir s'il y a une mise à jour pose d'autres problèmes. Par exemple, cela consomme de l'électricité « pour rien ».

Vous trouvez qu'il y a assez de problèmes ? Mais ce n'est pas fini. Imaginez le cas d'une mise à jour qui contienne une bogue, ce qui arrivera inévitablement. Comment revenir en arrière ? Refaire une mise à jour (la bogue risque d'empêcher ce processus) ? L'idéal serait que l'objet stocke deux ou trois versions antérieures de son logiciel localement, pour pouvoir basculer vers ces vieilles versions en cas de problème. Mais cela consomme de l'espace de stockage, qui est très limité pour la plupart des objets connectés.

Le consensus de l'atelier a été que les signatures des logiciels (avec vérification par l'objet), et la possibilité de mises à jour partielles, étaient importants. De même, les participants estimaient essentiels la disponibilité d'une infrastructure de mise à jour, qui puisse fonctionner pour des objets qui n'ont pas un accès complet à l'Internet. Par exemple, il faut qu'une organisation puisse avoir une copie locale du serveur de mise à jour, à la fois pour des raisons de performances, de protection de la vie privée, et pour éviter de donner un accès Internet à ses objets.

En parlant de vie privée (RFC 6973), il faut noter que des objets se connectant à un serveur de mise à jour exposent un certain nombre de choses au serveur, ce qui peut ne pas être souhaitable. Et certains objets sont étroitement associés à un utilisateur (tous les gadgets à la maison), aggravant le problème. Le RFC note qu'au minimum, il ne faut pas envoyer un identificateur unique trop facilement, surtout au dessus d'un lien non chiffré. Mais le RFC note à juste titre qu'il y a un conflit entre la vie privée et le désir des vendeurs de se faire de l'argent avec les données des utilisateurs.

On a surtout parlé jusqu'à présent des risques pour l'objet si le serveur des mises à jour est méchant ou piraté. Certains acteurs du domaine vont ajouter des risques pour le serveur : par exemple, si le logiciel est non-libre, certains peuvent souhaiter authentifier l'objet, pour ne pas distribuer leur précieux logiciel privateur à « n'importe qui ».

On en a déjà parlé mais cela vaut la peine d'y revenir : un gros problème de fond est celui de l'autorisation (section 4 du RFC). Qui peut accepter ou refuser une mise à jour ? Oui, il y a de bonnes raisons de refuser : des mises à jour obligatoires sont une forme de porte dérobée, elles permettent d'ajouter des fonctions qui n'étaient pas là avant et qui peuvent être malveillantes. Le cas avait été cité lors de l'affaire de l'iPhone de San Bernardino (des gens proposaient une mise à jour que le téléphone appliquerait, introduisant une porte dérobée). Et le RFC rappelle le cas d'une mise à jour forcée d'imprimantes HP qui avait supprimé des fonctions utiles mais que HP ne voulait plus (la possibilité d'accepter des cartouches d'encre fournies par les concurrents). Un cas analogue révélé la veille de la publication du RFC est celui de Tesla activant une nouvelle fonction à distance (ici, pour améliorer la voiture, mais il est facile de voir que cela pourrait être en sens inverse). Et il y a bien sûr le cas fameux d'Amazon détruisant des livres à distance.

Prenez un téléphone Android programmé par Google, fabriqué par LG, vendu par Orange à la société Michu qui le confie à son employé M. Dupuis-Morizeau. Qui va décider des mises à jour ?

On peut séparer les mises à jour qui corrigent une faille de sécurité et les autres : seules les premières seraient systématiquement appliquées. (Tous les fournisseurs de logiciel ne font pas cette séparation, qui les oblige à gérer deux lignes de mises à jour.) Ceci dit, en pratique, la distinction n'est pas toujours facile, et la correction d'une faille peut en entrainer d'autres.

D'autre part, certains objets connectés sont utilisés dans un environnement très régulé, où tout, matériel et logiciel, doit subir un processus de validation formel avant d'être déployé (c'est le cas des objets utilisés dans les hôpitaux, par exemple). Il y aura forcément une tension entre « faire la mise à jour en urgence car elle corrige une vulnérabilité » et « ne pas faire la mise à jour avant d'avoir tout revalidé, car cet objet est utilisé pour des fonctions vitales ».

Autre problème rigolo, et qui a de quoi inquiéter, le risque élevé d'une cessation du service de mise à jour logicielle (section 5 du RFC). Les vendeurs de logiciel ne sont pas un service public : ils peuvent décider d'arrêter de fournir un service pour des produits qui ne les intéressent plus (ou qui fait concurrence à un produit plus récent, qui offre une meilleure marge). Ou bien ils peuvent tout simplement faire faillite. Que faire face à cet échec du capitalisme à gérer les produits qu'il met sur le marché ? Le problème est d'autant plus fréquent que des objets connectés peuvent rester en service des années, une éternité pour les directions commerciales. Outre le cas du Nabaztag cité plus haut, le RFC mentionne l'exemple d'Eyefi. Un objet un peu complexe peut incorporer des parties faites par des organisations très différentes, dont certaines seront plus stables que d'autres.

Faut-il envisager un service de reprise de la maintenance, par des organisations spécialisées dans ce ramassage des orphelins ? Si ces organisations sont des entreprises à but lucratif, quel sera leur modèle d'affaires ? (Le RFC ne mentionne pas la possibilité qu'il puisse s'agir d'un service public.) Et est-ce que l'entreprise qui abandonne un produit va accepter ce transfert de responsabilité (aucune loi ne la force à gérer ses déchets logiciels) ?

Pour le logiciel, une grosse différence apparait selon qu'il s'agisse de logiciel libre ou pas. Un projet de logiciel libre peut se casser la figure (par exemple parce que l'unique développeur en a eu marre), mais il peut, techniquement et juridiquement, être repris par quelqu'un d'autre. Ce n'est qu'une possibilité, pas une certitude, et des tas de projets utiles ont été abandonnés car personne ne les a repris.

Néanmoins, si le logiciel libre n'est pas une condition suffisante pour assurer une maintenance sur le long terme, c'est à mon avis une condition nécessaire. Parfois, un logiciel est libéré lorsqu'une société abandonne un produit (ce fut le cas avec Little Printer, qui fut un succès, la maintenance étant repris par des développeurs individuels), parfois la société ne fait rien, et le logiciel est perdu. Bref, un système de séquestre du code, pour pouvoir être transmis en cas de défaillance de l'entreprise originale, serait une bonne chose.

Comme souvent en sécurité, domaine qui ne supporte pas le « ya ka fo kon », certaines exigences sont contradictoires. Par exemple, on veut sécuriser les mises à jour (pour éviter qu'un pirate ne glisse de fausses mises à jour dans le processus), ce qui impose des contrôles, par exemple par des signatures numériques. Mais on veut aussi assurer la maintenance après la fin de la société originelle. Si un prestataire reprend la maintenance du code, mais qu'il n'a pas la clé privée permettant de signer les mises à jour, les objets refuseront celles-ci… Le séquestre obligatoire de ces clés peut être une solution, mais elle introduit d'autres risques (vol des clés chez le notaire).

Une solution possible serait que les appareils connectés soient programmés pour cesser tout service s'ils n'arrivent pas à faire de mise à jour pendant N mois, ou bien si le serveur des mises à jour leur dit que le contrat de support est terminé. De telles bombes temporelles seraient bonnes pour la sécurité, et pour le business des fabricants. Mais elles changeraient le modèle d'achat d'équipement : on ne serait plus propriétaire de sa voiture ou de son grille-pain, mais locataire temporaire. De la vraie obsolescence programmée ! De telles bombes dormantes peuvent aussi interférer avec d'autres fonctions de sécurité. Par exemple, un téléphone doit pouvoir passer des appels d'urgence, même si l'abonnement a expiré. Il serait logique qu'il soit en mesure d'appeler le 112, même si son logiciel n'a pas pu être mis à jour depuis longtemps (cf. RFC 7406 pour une discussion sur un compromis similaire.)

Dans une logique libertarienne, ce RFC parle peu de la possibilité d'obligations légales (comme il y a un contrôle technique pour les voitures, il pourrait y avoir obligation de mesures de sécurité quand on vend des objets connectés). Comme il n'y a aucune chance que des entreprises capitalistes fassent spontanément des efforts pour améliorer la sécurité de tous, si on n'utilise pas de contraintes légales, il reste la possibilité d'incitations, discutée dans la section 6. Certaines sont utopiques (« il est dans l'intérêt de tous d'améliorer la sécurité, donc il faut expliquer aux gentils capitalistes l'intérêt de la sécurité, et ils le feront gratuitement »). Une possibilité est celle d'un abonnement : ayant acheté un objet connecté, on devrait payer régulièrement pour le maintenir à jour. Du point de vue de la sécurité, c'est absurde : il est dans l'intérêt de tous que toutes les machines soient à jour, question sécurité. Avec un abonnement, certains propriétaires choisiront de ne pas payer, et leurs engins seront un danger pour tous. (Comparons avec la santé publiqué : il est dans l'intérêt des riches que les pauvres se soignent, sinon, les maladies contagieuses se répandront et frapperont tout le monde. Les vaccinations gratuites ne sont donc pas de la pure générosité.)

Un des problèmes du soi-disant « Internet des objets » est qu'on ne sait pas grand'chose de ce qui s'y passe. Combien de constructeurs d'objets connectés peuvent dire combien ils ont d'objets encore actifs dans la nature, et quel pourcentage est à jour, question logiciel ? La section 7 du RFC se penche sur les questions de mesures. Un des articles présentés à l'atelier notait que, treize ans après la fin de la distribution d'un objet connecté, on en détectait encore des exemplaires actifs.

Garder trace de ces machines n'est pas trivial, puisque certaines ne seront allumées que de manière très intermittente, et que d'autres seront déployées dans des réseaux fermés. Mais ce serait pourtant utile, par exemple pour savoir combien de temps encore il faut gérer des mises à jour pour tel modèle, savoir quels problèmes ont été rencontrés sur le terrain, savoir quelles machines ont été compromises, etc.

La solution simple serait que l'objet ait un identifiant unique et contacte son fabricant de temps en temps, en donnant des informations sur lui-même. Évidemment, cela soulève de gros problèmes de préservation de la vie privée, si le fabricant de brosses à dents connait vos habitudes d'hygiène (« sa brosse à dents n'a pas été allumée depuis six mois, envoyons-lui des pubs pour un dentiste »). Il existe des techniques statistiques qui permettent de récolter des données sans tout révéler, comme le système RAPPOR ou EPID.

Quelle que soit l'efficacité des mises à jour, il ne fait pas de doute que, parfois, des machines seront piratées. Comment les gérer, à partir de là (section 9) ? Car ce ne sera pas seulement un ou deux objets qu'il faudra reformater avec une copie neuve du système d'exploitation. En cas de faille exploitée, ce seront au moins des centaines ou des milliers d'objets qui auront été piratés par un logiciel comme Mirai. (Notez qu'un travail - qui a échoué - avait été fait à l'IETF sur la gestion des machines terminales et leur sécurité, NEA.)

Rien que signaler à l'utilisateur, sans ouvrir une nouvelle voie d'attaque pour le hameçonnage, n'est pas évident (le RFC 6561 propose une solution, mais peu déployée). Bref, pour l'instant, pas de solution à ce problème. Quand on sait que les organisations à but lucratif ne réagissent jamais quand on leur signale un bot dans leur réseau, on imagine ce que ce sera quand on préviendra M. Michu que son grille-pain est piraté et participe à des DoS (comme celles avec SNMP ou bien celle contre Brian Krebs).

Avant d'arriver à une conclusion très partielle, notre RFC, dans sa section 10, traite quelques points divers :

  • Pas mal de gadgets connectés seront rapidement abandonnés, ne délivrant plus de service utile et n'intéressant plus leur propriétaire, mais dont certains seront toujours connectés et piratables. Qui s'occupera de ces orphelins dangereux ?
  • Que devra faire la machine qui voit qu'elle n'arrive pas à faire ses mises à jour ? Couiner très fort comme le détecteur de fumée dont la batterie s'épuise ? Vous imaginez votre cuisine quand dix appareils hurleront en même temps « Software update failed. Act now! » ? Ou bien les appareils doivent-ils s'éteindre automatiquement et silencieusement ? (Les fabricants adoreront cette solution : pour éliminer les vieilles machines et forcer les clients à acheter les nouvelles, il suffira de stopper le serveur des mises à jour.)
  • La cryptographie post-quantique est pour l'instant inutile (et les mécanismes actuels font des signatures énormes, inadaptées aux objets contraints) mais il est impossible de dire quand elle deviendra indispensable. Cinq ans ? Dix ans ? Jamais ? Le problème est que, les objets connectés restant longtemps sur le terrain, il y a un risque qu'un objet soit livré avec de la cryptographie pré-quantique qui soit cassée par les ordinateurs quantiques pendant sa vie. On sera alors bien embêtés.
  • Enfin, pour ceux qui utilisent des certificats pour vérifier les signatures, il faut noter que peu testent les révocations (RFC 6961 et ses copains). Il sera donc difficile, voire impossible, de rattraper le coup si une clé privée de signature est volée.

La section 11 rassemble les conclusions de l'atelier. On notera qu'il y a peu de consensus.

  • Comme c'est l'IETF, il n'est pas étonnant que les participants soient tombés d'accord sur l'utilité d'une solution normalisée pour la distribution et la signature de logiciels, afin de permettre des mises à jour fiables.
  • Il n'est par contre pas clair de savoir si cette solution doit tout inclure, ou seulement certaines parties du système (la signature, par exemple).
  • Des mécanismes de « transmission du pouvoir » sont nécessaires, par exemple pour traiter le cas où une société fait faillite, et passe la maintenance des objets qu'elle a vendu à une association ou un service public. Passer le mot de passe de root est un exemple (très primitif).

L'annexe B du RFC liste tous les papiers présentés à l'atelier qui sont, évidemment en ligne. Sinon, vous pouvez regarder le site officiel de l'atelier, et un bon résumé de présentation. Je recommande aussi cet article de l'IETF Journal, et un très bon article critique sur les objets connectés.


Téléchargez le RFC 8240


L'article seul

RFC 8228: Guidance on Designing Label Generation Rulesets (LGRs) Supporting Variant Labels

Date de publication du RFC : Août 2017
Auteur(s) du RFC : A. Freytag
Pour information
Première rédaction de cet article le 23 août 2017


Le RFC 7940 définissait un langage, LGR (Label Generation Ruleset), pour exprimer des politiques d'enregistrement de noms écrits en Unicode, avec les éventuelles variantes. Par exemple, avec LGR, on peut exprimer une politique disant que les caractères de l'alphabet latin et eux seuls sont autorisés, et que « é » est considéré équivalent à « e », « ç » à « c », etc. Ce nouveau RFC donne quelques conseils aux auteurs LGR. (Personnellement, je n'ai pas trouvé qu'il apportait grand'chose par rapport au RFC 7940.)

LGR peut s'appliquer à tous les cas où on a des identificateurs en Unicode mais il a surtout été développé pour les IDN (RFC 5890). Les exemples de ce RFC 8228 sont donc surtout pris dans ce domaine d'application. Un ensemble de règles exprimées dans le langage du RFC 7940 va définir deux choses :

  • Si un nom donné est acceptable ou pas (dans l'exemple donné plus haut, un registre de noms de domaine ouest-européen peut décider de n'autoriser que l'alphabet latin),
  • Et quels noms sont des variantes les uns des autres. Une variante est un nom composé de caractères Unicode différents mais qui est considéré comme « le même » (la définition de ce que c'est que « le même » n'étant pas technique ; par exemple, un anglophone peut considérer que theatre et theater sont « le même » mot, alors que, du point de vue technique, ce sont deux chaînes de caractère différentes). Le RFC dit que deux noms sont « le même » s'ils sont visuellement similaires (google vs. goog1e), mais c'est une notion bien trop floue, et qui dépend en outre de la police de caractères utilisée (avec Courier, google et goog1e sont difficilement distinguables). Le RFC ajoute qu'il y a également le cas de la similarité sémantique (le cas de theatre vs. theater, ou bien celui des sinogrammes traditionnels vs. les simplifiés ou encore, mais c'est compliqué, le cas des accents en français, avec « café » et « cafe » mais aussi avec « interne » et « interné »).

L'idée est que le registre utilise ensuite ces règles pour accepter ou refuser un nom et, si le nom est accepté, pour définir quelles variantes deviennent ainsi bloquées, ou bien attribuées automatiquement au même titulaire. Notez une nouvelle fois qu'il s'agit d'une décision politique et non technique. Le RFC dit d'ailleurs prudemment dans la section 1 qu'il ne sait pas si ce concept de variante est vraiment utile à quoi que ce soit. (J'ajoute qu'en général ce soi-disant risque de confusion a surtout été utilisé comme FUD anti-Unicode, par des gens qui n'ont jamais digéré la variété des écritures humaines.)

J'ai dit qu'une variante était « le même » que le nom de base. Du point de vue mathématique, la relation « est une variante de » doit donc être symétrique et transitive (section 2). « Est une variante de » est noté avec un tiret donc A - B signifie « A est une variante de B » (et réciproquement, vu la symétrie). Notez que le RFC 7940 utilisait un langage fondé sur XML alors que ce RFC 8228 préfère une notation plus compacte. La section 18 de notre RFC indique la correspondance entre la notation du RFC 7940 et celle du nouveau RFC.

Mais toutes les relations entre noms « proches » ne sont pas forcément symétriques et transitives. Ainsi, la relation « ressemble à » (le chiffre 1 ressemble à la lettre l minuscule) est non seulement vague (cela dépend en effet de la police) mais également non transitive (deux noms ressemblent chacun à un nom dont la forme est quelque part entre eux, sans pour autant se ressembler entre eux).

Le RFC 7940 permet de définir des relations qui ne sont ni symétriques, ni transitives. Mais ce nouveau RFC 8228 préfère les relations d'équivalence.

Bon, et maintenant, comment on crée les variantes d'un nom ou d'un composant d'un nom (section 6) ? On remplace chaque caractère du nom originel par toutes ses variantes possibles (le fait qu'un caractère correspond à un autre est noté -->). Ainsi, si on a décidé que « e » et « é » étaient équivalents (é --> e), le nom « interne » aura comme variantes possibles « interné », « intérne » et « intérné » (oui, une seule de ces variantes a un sens en français, je sais). Une fois cette génération de variantes faites, le registre, selon sa politique, pourra l'utiliser pour, par exemple, refuser l'enregistrement d'« interné » si « interne » est déjà pris (je le répète parce que c'est important : ce RFC ne décrit pas de politique, l'exemple ci-dessus n'est qu'un exemple).

En pratique, travailler caractère par caractère n'est pas toujours réaliste. Il y a des cas où c'est un groupe de caractères qui poserait problème. La section 7 introduit une amélioration où on peut étiqueter les correspondances de manière asymétrique. Le caractère x veut dire que l'allocation du nom est interdite (détails en section 9), le a qu'elle est autorisée (détails en section 8). On pourrait donc avoir « e x--> é » et « é a--> e » ce qui veut dire que la réservation de « interne » bloquerait celle d'« interné » mais pas le contraire.

Le monde des identificateurs étant très riche et complexe, on ne s'étonnera pas que des règles trop simples soient souvent prises en défaut. Ainsi, la variante peut dépendre du contexte : dans certaines écritures (comme l'arabe), la forme d'un caractère dépend de sa position dans le mot, et un même caractère peut donc entrainer de la confusion s'il est à la fin d'un mot mais pas s'il est au début. Il faut donc étiqueter les relations avec ce détail (par exemple, « final: C --> D » si le caractère noté C peut se confondre avec le caractère D mais uniquement si C est en fin de mot, cf. section 15 du RFC).

Si vous développez du LGR, au moins deux logiciels peuvent aider, celui de Viagénie, lgr-crore et lgr-django et un logiciel de l'auteur de ce RFC, développé pour le « ICANN Integration Panel work » mais qui ne semble pas publié.


Téléchargez le RFC 8228


L'article seul

RFC 8216: HTTP Live Streaming

Date de publication du RFC : Août 2017
Auteur(s) du RFC : R. Pantos (Apple), W. May (Major League Baseball Advanced Media)
Pour information
Première rédaction de cet article le 1 septembre 2017


Ce RFC décrit la version 7 du protocole HTTP Live Streaming, qui permet de distribuer des flux multimédia, typiquement de la vidéo.

Utiliser HTTP, c'est bien, ça passe quasiment tous les pare-feux, et ça permet de réutiliser l'infrastructure existante, comme les serveurs, et les caches. (Au contraire, un protocole comme RTP, RFC 3550, a souvent du mal à passer les différentes middleboxes.) La manière triviale de distribuer une vidéo avec HTTP est d'envoyer un fichier vidéo au bon format, avec des méthodes HTTP standard, typiquement en réponse à un GET. Mais cette méthode a des tas de limites. Par exemple, elle ne permet pas de s'adapter à une capacité variable du réseau. Par contre, le protocole décrit dans ce RFC, quoique plus compliqué qu'un simple GET, permet cet ajustement (et plein d'autres).

HTTP Live Streaming (ou simplement Live Streaming, ou encore HLS) existe depuis longtemps, la première spécification a été publiée (par Apple) en 2009, mais c'est la première fois qu'il se retrouve dans un RFC, ce qui devrait permettre d'améliorer encore l'interopérabilité.

Donc, brève description de HTTP Live Streaming : une ressource multimédia qu'on veut diffuser est représentée par un URI. Ceui-ci désigne une playlist, qui est un fichier texte contenant les URI des données multimedia et diverses informations. Les données multimédia figurent dans plusieurs segments ; en jouant tous les segments successivement, on obtient la vidéo souhaitée. Le client n'a pas ainsi à tout charger, il peut récupérer les segments au fur et à mesure de ses besoins. (Au lieu de « segments », mmu_man suggère de parler d'un « émincé de fichiers ».) Voici l'exemple de playlist que donne le RFC :

#EXTM3U
#EXT-X-TARGETDURATION:10

#EXTINF:9.009,
http://media.example.com/first.ts
#EXTINF:9.009,
http://media.example.com/second.ts
#EXTINF:3.003,
http://media.example.com/third.ts
    

Ce format de playlist est dérivé du format M3U et est généralement nommé « M3U étendu ». On y trouve successivement l'identificateur du format (si ça commence par #EXTM3U, c'est bien une playlist de notre RFC), la durée maximale d'un segment en secondes, puis les trois segments, avec la durée de chacun. Cette durée, indiquée par l'étiquette #EXTINF, est un des rares éléments obligatoires dans une playlist. Il y a bien sûr plein d'autres choses qu'on peut mettre dans un fichier playlist, la section 4 du RFC en donne la liste complète. Ainsi, #EXT-X-BYTERANGE permettra d'indiquer qu'on ne veut jouer qu'une partie d'une vidéo. Des exemples plus complets sont donnés dans la section 8 du RFC.

Ça, c'était la media playlist, qui se limite à lister des ressources multimédias. La master playlist, dont le format est le même, est plus riche, et permet de spécifier des versions alternatives d'un même contenu. Ces variantes peuvent être purement techniques (« variant stream », deux encodages d'une même vidéo avec différents formats) ou porter sur le fond : par exemple deux pistes audio dans des langues différentes, ou deux vidéos d'un même évènement filmé depuis deux points de vue distincts. Les variantes techniques servent au client à s'ajuster aux conditions réelles du réseau, les variantes de fond (nommées renditions) servent au client à donner à l'utilisateur ce qu'il préfère. Ici, par exemple, on a dans cette master playlist trois variantes techniques (trois résolutions, de la plus basse, à la plus élevée, qui va nécessiter une bonne capacité réseau), et trois « renditions », correspondant à trois points de vue (centerfield et dugout sont des termes de baseball, ce qui est logique vu l'employeur d'un des deux auteurs du RFC) :

#EXTM3U
#EXT-X-MEDIA:TYPE=VIDEO,GROUP-ID="low",NAME="Main", \
   DEFAULT=YES,URI="low/main/audio-video.m3u8"
#EXT-X-MEDIA:TYPE=VIDEO,GROUP-ID="low",NAME="Centerfield", \
   DEFAULT=NO,URI="low/centerfield/audio-video.m3u8"
#EXT-X-MEDIA:TYPE=VIDEO,GROUP-ID="low",NAME="Dugout", \
   DEFAULT=NO,URI="low/dugout/audio-video.m3u8"

#EXT-X-STREAM-INF:BANDWIDTH=1280000,CODECS="...",VIDEO="low"
   low/main/audio-video.m3u8

#EXT-X-MEDIA:TYPE=VIDEO,GROUP-ID="mid",NAME="Main", \
   DEFAULT=YES,URI="mid/main/audio-video.m3u8"
#EXT-X-MEDIA:TYPE=VIDEO,GROUP-ID="mid",NAME="Centerfield", \
   DEFAULT=NO,URI="mid/centerfield/audio-video.m3u8"
#EXT-X-MEDIA:TYPE=VIDEO,GROUP-ID="mid",NAME="Dugout", \
   DEFAULT=NO,URI="mid/dugout/audio-video.m3u8"

#EXT-X-STREAM-INF:BANDWIDTH=2560000,CODECS="...",VIDEO="mid"
   mid/main/audio-video.m3u8

#EXT-X-MEDIA:TYPE=VIDEO,GROUP-ID="hi",NAME="Main", \
   DEFAULT=YES,URI="hi/main/audio-video.m3u8"
#EXT-X-MEDIA:TYPE=VIDEO,GROUP-ID="hi",NAME="Centerfield", \
   DEFAULT=NO,URI="hi/centerfield/audio-video.m3u8"
#EXT-X-MEDIA:TYPE=VIDEO,GROUP-ID="hi",NAME="Dugout", \
   DEFAULT=NO,URI="hi/dugout/audio-video.m3u8"

#EXT-X-STREAM-INF:BANDWIDTH=7680000,CODECS="...",VIDEO="hi"
   hi/main/audio-video.m3u8
    

Si vous voulez le voir en vrai, et que vous êtes abonné à Free, la Freebox distribue sa playlist sous ce format (mais avec le mauvais type MIME) :


% curl -s http://mafreebox.freebox.fr/freeboxtv/playlist.m3u
#EXTM3U
#EXTINF:0,2 - France 2 (bas débit)
rtsp://mafreebox.freebox.fr/fbxtv_pub/stream?namespace=1&service=201&flavour=ld
#EXTINF:0,2 - France 2 (HD)
rtsp://mafreebox.freebox.fr/fbxtv_pub/stream?namespace=1&service=201&flavour=hd
#EXTINF:0,2 - France 2 (standard)
rtsp://mafreebox.freebox.fr/fbxtv_pub/stream?namespace=1&service=201&flavour=sd
#EXTINF:0,2 - France 2 (auto)
rtsp://mafreebox.freebox.fr/fbxtv_pub/stream?namespace=1&service=201
#EXTINF:0,3 - France 3 (standard)
rtsp://mafreebox.freebox.fr/fbxtv_pub/stream?namespace=1&service=202&flavour=sd
...

    

(On me dit qu'avec certaines Freebox, il faut ajouter -L à curl, en raison d'une redirection HTTP.) Un client comme vlc peut prendre comme argument l'URI de la playlist, la télécharger et jouer ensuite les vidéos.

(Tous les moyens sont bons pour télécharger la playlist, le RFC n'impose pas un mécanisme particulier.) Télécharger chacun des segments se fait a priori avec HTTP, RFC 7230, mais vous voyez plus haut que, sur la Freebox, c'est RTSP, RFC 7826. Le serveur, lui, est un serveur HTTP ordinaire. L'auteur a « juste » eu à découper sa vidéo en segments (ou la garder en un seul morceau si elle est assez courte), à fabriquer un fichier playlist, puis à le servir avec le type MIME application/vnd.apple.mpegurl. (La section 6 du RFC décrit plus en détail ce que doivent faire client et serveur.)

Il est recommandé que chaque segment soit auto-suffisant, c'est-à-dire puisse être décodé sans avoir besoin des autres segments. Ainsi, si les segments sont en H.264, chacun doit avoir un Instantaneous Decoding Refresh (IDR).

Plusieurs formats sont évidemment possibles dans une playlist HTTP Live Streaming, MPEG-2, MPEG-4 fragmenté, WebVTT pour avoir les sous-titres, et un format pour l'audio (qui accepte entre autres MP3).

HTTP Live Streaming permet aussi de servir du direct. Prenons par exemple le flux vidéo de l'Assemblée Nationale, qui permet de suivre les débats parlementaires :

    
% curl -s http://videos-diffusion-live.assemblee-nationale.fr/live/live1/stream1.m3u8
#EXTM3U
#EXT-X-VERSION:3
#EXT-X-ALLOW-CACHE:NO
#EXT-X-TARGETDURATION:11
#EXT-X-MEDIA-SEQUENCE:382
#EXTINF:9.996,
media_1_4805021_382.ts
#EXTINF:11.483,
media_1_4805021_383.ts
...

Un peu plus tard, les fichiers ont changé, le client HLS doit recharger la playlist régulièrement (section 6.2.2 du RFC), et charger de nouveaux fichiers vidéo :

% curl -s http://videos-diffusion-live.assemblee-nationale.fr/live/live1/stream1.m3u8
#EXTM3U
#EXT-X-VERSION:3
#EXT-X-ALLOW-CACHE:NO
#EXT-X-TARGETDURATION:11
#EXT-X-MEDIA-SEQUENCE:390
#EXTINF:10.039,
media_1_4805021_390.ts
#EXTINF:11.242,
media_1_4805021_391.ts
...

(Notez également l'incrémentation du #EXT-X-MEDIA-SEQUENCE.) Ainsi, l'utilisateur a l'impression d'une vidéo continue, alors que le logiciel client passe son temps à charger des segments différents et à les afficher à la suite.

Notez que HTTP Live Streaming n'est pas le seul mécanisme dans ce domaine, son principal concurrent est MPEG-DASH.

Si vous voulez lire davantage :


Téléchargez le RFC 8216


L'article seul

RFC 8215: Local-Use IPv4/IPv6 Translation Prefix

Date de publication du RFC : Août 2017
Auteur(s) du RFC : T. Anderson (Redpill Linpro)
Chemin des normes
Première rédaction de cet article le 18 septembre 2017


Ce très court RFC documente la réservation du préfixe IPv6 64:ff9b:1::/48, pour les divers mécanismes de traduction entre IPv6 et IPv4.

L'adressage de ces mécanismes de traduction est décrit dans le RFC 6052. Il réservait le préfixe 64:ff9b::/96, qui s'est avéré insuffisant et est désormais complété par notre RFC 8215.

Ouvrez bien l'œil : ces deux préfixes sont différents, même si leurs quatre premiers octets sont identiques (c'est un problème fréquent en IPv6 : il peut être difficile de distinguer deux adresses du premier coup.)

La section 3 de notre RFC expose le problème : depuis la publication du RFC 6052, plusieurs mécanismes de traduction IPv4<->IPv6 ont été proposés (par exemple dans les RFC 6146 et RFC 7915). Ils ne sont pas inconciliables (ils couvrent parfois des scénarios différents ) et un opérateur peut donc vouloir en déployer plusieurs à la fois. Le seul préfixe 64:ff9b::/96 ne va alors plus suffire. Il faut donc un préfixe plus grand, et dont l'usage n'est pas restreint à une seule technologie de traduction.

Pourquoi 64:ff9b:1::/48, d'ailleurs ? La section 4 répond à la question. La longueur de 48 bits a été choisie pour permettre plusieurs mécanismes de traduction, chacun utilisant un préfixe plus spécifique. Par exemple, si chaque mécanisme utilise un /64, le préfixe réservé pour les englober tous devait être un /48, ou plus général (on se limite aux multiples de 16 bits, car ils permettent que les préfixes se terminent sur un deux-points, facilitant la vie de l'administrateur réseaux qui devra les manipuler).

Ensuite, pourquoi cette valeur 64:ff9b:1:: ? Parce qu'elle est adjacente au 64:ff9b::/96, minimisant la consommation d'adresses IPv6. (64:ff9a:ffff::/48 est également adjacent, de l'autre côté, mais l'agrégation avec 64:ff9b::/96 en un seul préfixe est beaucoup moins efficace. Et puis 64:ff9b:1:: est plus court.)

À part son usage, 64:ff9b:1::/48 est un préfixe IPv6 normal et les routeurs, ou autres machines qui manipulent des adresses IPv6, ne doivent pas le traiter différemment des autres.

Le nouveau préfixe est désormais enregistré dans le registre des adresses IPv6 spéciales (section 7 de notre RFC).


Téléchargez le RFC 8215


L'article seul

RFC 8212: Default External BGP (EBGP) Route Propagation Behavior without Policies

Date de publication du RFC : Juillet 2017
Auteur(s) du RFC : J. Mauch (Akamai), J. Snijders (NTT), G. Hankins (Nokia)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF grow
Première rédaction de cet article le 10 juillet 2017


Ce RFC est très court, mais concerne un problème fréquent sur l'Internet : les fuites de routes BGP. Traditionnellement, un routeur BGP acceptait par défaut toutes les routes, et annonçait par défaut à ses voisins toutes les routes qu'il connaissait. Il fallait une configuration explicite pour ne pas le faire. En cas d'erreur, ce comportement menait à des fuites (RFC 7908). Notre RFC normalise désormais le comportement inverse : un routeur BGP ne doit, par défaut, rien accepter et rien annoncer. Il faut qu'il soit configuré explicitement si on veut le faire.

Avec l'ancien comportement, la configuration de certains routeurs BGP, les plus imprudents, indiquait les pairs avec qui on échangeait de l'information, plus un certain nombre de routes qu'on n'envoyait pas. Si une erreur faisait qu'on recevait tout à coup des routes imprévues, on les acceptait, et on les renvoyait telles quelles, propageant la fuite (RFC 7908). Des cas fameux de fuites ne manquent pas (voir par exemple celle d'un opérateur malaisien). L'idée derrière ce comportement était d'assurer la connectivité du graphe de l'Internet. Aujourd'hui, on est plutôt plus sensibles aux risques de sécurité qu'à ceux de partitionnement du graphe, et les bonnes pratiques demandent depuis longtemps qu'on indique explicitement ce qu'on accepte et ce qu'on envoie. Voyez par exemple les recommandations de l'ANSSI.

En pratique, ce très court RFC ajoute juste deux paragraphes à la norme BGP, le RFC 4271. Dans sa section 9.1, les paragraphe en question disent désormais qu'il ne doit pas y avoir du tout d'exportation ou d'importation de routes, par défaut. Notez donc que cela ne change pas le protocole BGP, juste le comportement local.

Du moment qu'on change le comportement par défaut, il va y avoir un problème de transition (et ce point a soulevé des discussions à l'IETF). Si le logiciel du routeur s'adaptait au nouveau RFC, certains opérateurs seraient bien surpris que leurs routes ne soient tout coup plus annoncées. L'annexe A du RFC recommande une stratégie en deux temps :

  • D'abord introduire une nouvelle option « BGP non sécurisé » qui serait à Vrai par défaut (mais que les opérateurs pourraient changer), ce qui garderait le comportement actuel mais avec un avertissement émis quelque part « attention, vous exportez des routes sans décision explicite »,
  • Ensuite, dans la version suivante du logiciel, faire que cette option soit à Faux par défaut.

Les routeurs Cisco utilisant IOS-XR ont déjà ce comportement.

Et pour finir sur une note d'humour, à une réunion IETF (IETF 97), le projet qui a finalement mené à ce RFC était illustré… de photos de préservatifs. Pratiquez donc le BGP safe, l'Internet vous remerciera.


Téléchargez le RFC 8212


L'article seul

RFC 8201: Path MTU Discovery for IP version 6

Date de publication du RFC : Juillet 2017
Auteur(s) du RFC : J. McCann (Digital Equipment Corporation), S. Deering (Retired), J. Mogul (Digital Equipment Corporation), R. Hinden (Check Point Software)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF 6man
Première rédaction de cet article le 16 juillet 2017


Ce RFC est l'adaptation à IPv6 du protocole décrit dans le RFC 1191, protocole qui permet de découvrir la MTU du chemin entre deux machines reliées par Internet. Il remplace le RFC 1981.

Avec IPv4, déterminer la MTU maximale du chemin est très utile pour optimiser les performances. Mais elle devient presque indispensable en IPv6, où les routeurs n'ont pas le droit de fragmenter les paquets trop gros (toute fragmentation doit être faite dans la machine de départ). PMTU fait donc quasi-obligatoirement partie d'IPv6. Une alternative est de n'envoyer que des paquets suffisamment petits pour passer partout. C'est moins efficace (on ne tirera pas profit des MTU plus importantes), mais ça peut être intéressant pour des mises en œuvre légères d'IPv6, par exemple pour des objets connectés. (La section 4 du RFC précise en effet que mettre en œuvre cette découverte de la MTU du chemin n'est pas obligatoire.)

L'algorithme (section 3 de notre RFC) est le même qu'en v4, envoyer des paquets, et voir si on reçoit des paquets ICMP Packet too big (RFC 4443, section 3.2) qui contiennent en général la MTU maximale du lien suivant. (Pas de bit DF - Don't fragment - en IPv6 puisque la fragmentation n'est possible qu'à la source. L'annexe A détaille les différences avec l'algorithme IPv4 décrit dans le RFC 1191.)

Voici par exemple un de ces paquets ICMP, vu par tcpdump (déclenché par une commande ping -s 1500 …) :

18:18:44.813927 IP6 2a02:8400:0:3::a > 2605:4500:2:245b::bad:dcaf: ICMP6, packet too big, mtu 1450, length 1240

Il ne faut pas s'arrêter au premier paquet Packet too big reçu, car il peut y avoir des liens réseau avec une MTU encore plus basse plus loin. En outre, la MTU du chemin change avec le temps et il faut donc rester vigilant, on peut recevoir des Packet too big si le trafic passe désormais par un lien de MTU plus faible que la précédente MTU du chemin. Plus délicat, il faut aussi de temps en temps réessayer avec des paquets plus gros, pour voir si la MTU du chemin n'aurait pas augmenté. Comme cela va faire perdre des paquets, s'il n'y a pas eu d'augmentation, il ne faut pas le faire trop souvent. (Dix minutes, dit la section 5.)

La section 4 du RFC précise les exigences qu'il normalise. (Je donne quelques exemples de leur mise en œuvre dans le noyau Linux, dans net/ipv6/route.c.) Par exemple, le nœud IPv6 doit vérifier le contenu des paquets ICMP Packet Too Big qu'il reçoit (le Message Body, cf. RFC 4443, où le routeur émetteur est censé placer des données du paquet original), pour éviter de croire des faux messages ICMP envoyés par un attaquant (rien n'authentifie un paquet ICMP, à part son contenu).

Nouveauté de ce RFC, par rapport à son prédecesseur, un nœud IPv6 doit ignorer les messages Packet Too Big indiquant une MTU inférieur aux 1 280 octets minimum d'IPv6 (le RFC 8021 explique pourquoi). C'est le but de l'instruction mtu = max_t(u32, mtu, IPV6_MIN_MTU); dans le code du noyau Linux, qui ne garde pas la MTU indiquée si elle est inférieur au minimum.

Et la machine IPv6 ne doit jamais augmenter la MTU du chemin suite à la réception d'un Packet Too Big indiquant une MTU supérieure à l'actuelle. Un tel message ne peut être qu'une erreur ou une attaque. Voir les commentaires au début de la fonction rt6_mtu_change_route dans le code Linux.

Comme avec IPv4, l'algorithme PMTU marche mal en pratique car beaucoup de sites filtrent stupidement tous les paquets ICMP et la machine qui tente de faire de la Path MTU discovery n'aura jamais de réponse. IPv6, comme IPv4, devra donc plutôt utiliser la technique du RFC 4821.

La section 5 du RFC rassemble diverses questions de mise en œuvre de cette découverte de la MTU du chemin. D'abord, il y a l'interaction entre IP (couche 3) et les protocoles au dessus, comme TCP mais aussi des protocoles utilisant UDP, comme le DNS. Ces protocoles de transport ont une MMS_S (maximum send transport-message size, voir le RFC 1122) qui est à l'origine la MTU moins la taille des en-têtes. Les protocoles de transport peuvent diminuer cette MMS_S pour ne pas avoir à faire de fragmentation.

Pour le DNS, par exemple, on peut diminuer l'usage de la découverte de la MTU du chemin en diminuant la taille EDNS. Par exemple, avec le serveur nsd, on mettrait :

ipv6-edns-size: 1460

Et, avec 1 460 octets possibles, on serait alors raisonnablement sûr de ne pas avoir de fragmentation donc, même si la découverte de la MTU du chemin marche mal, tout ira bien.

Une fois la découverte de la MTU du chemin faite, où faut-il garder l'information, afin d'éviter de recommencer cette découverte à chaque fois ? Idéalement, cette information est valable pour un chemin donné : si le chemin change (ou, a fortiori, si la destination change), il faudra découvrir à nouveau. Mais la machine finale ne connait pas en général tout le chemin suivi (on ne fait pas un traceroute à chaque connexion). Le RFC suggère donc (section 5.2) de stocker une MTU du chemin par couple {destination, interface}. Si on n'a qu'une seule interface réseau, ce qui est le cas de la plupart des machines terminales, on stocke la MTU du chemin par destination et on maintient donc un état pour chaque destination (même quand on ne lui parle qu'en UDP, qui n'a normalement pas d'état). Les deux exemples suivants concernent une destination où la MTU du chemin est de 1 450 octets. Pour afficher cette information sur Linux pour une adresse de destination :

% ip -6  route get 2a02:8428:46c:5801::4
2a02:8428:46c:5801::4 from :: via 2001:67c:1348:7::1 dev eth0 src 2001:67c:1348:7::86:133 metric 0 
    cache  expires 366sec mtu 1450 pref medium

S'il n'y a pas de PMTU indiquée, c'est que le cache a expiré, réessayez (en UDP, car TCP se fie à la MSS). Notez que, tant qu'on n'a pas reçu un seul Packet Too Big, il n'y a pas de MTU affichée. Donc, pour la plupart des destinations (celles joignables avec comme PMTU la MTU d'Ethernet), vous ne verrez rien. Sur FreeBSD, cet affichage peut se faire avec :

% sysctl -o net.inet.tcp.hostcache.list | fgrep 2a02:8428:46c:5801::4
2a02:8428:46c:5801::4  1450        0     23ms     34ms         0  4388        0 0   23    4 3600

Pour d'autres systèmes, je vous recommande cet article.

Notez qu'il existe des cas compliqués (ECMP) où cette approche de stockage de la PMTU par destination peut être insuffisante. Ce n'est donc qu'une suggestion, chaque implémentation d'IPv6 peut choisir sa façon de mémoriser les MTU des chemins.

Si on veut simplifier la mise en œuvre, et la consommation mémoire, on peut ne mémoriser qu'une seule MTU du chemin, la MTU minimale de tous les chemins testés. Ce n'est pas optimal, mais ça marchera.

Si on stocke la MTU du chemin, comme l'Internet peut changer, il faut se préparer à ce que l'information stockée devienne obsolète. Si elle est trop grande, on recevra des Packet too big (il ne faut donc pas s'attendre à n'en recevoir que pendant la découverte initiale). Si elle est trop petite, on va envoyer des paquets plus petits que ce qu'on pourrait se permettre. Le RFC suggère donc (section 5.3) de ne garder l'information sur la MTU du chemin que pendant une dizaine de minutes.

Le RFC demande enfin (section 5.5) que les mises en œuvre d'IPv6 permettent à l'ingénieur système de configurer la découverte de la MTU du chemin : la débrayer sur certaines interfaces, fixer à la main la MTU d'un chemin, etc.

Il ne faut pas oublier les problèmes de sécurité (section 6 du RFC) : les Packet Too Big ne sont pas authentifiés et un attaquant peut donc en générer pour transmettre une fausse information. Si la MTU indiquée est plus grande que la réalité, les paquets seront jetés. Si elle est plus petite, on aura des sous-performances.

Autre problème de sécurité, le risque que certains administrateurs réseau incompétents ne filtrent tous les messages ICMP, donc également les Packet Too Big (c'est stupide, mais cela arrive). Dans ce cas, la découverte de la MTU du chemin ne fonctionnera pas (cf. RFC 4890 sur les recommandations concernant le filtrage ICMP). L'émetteur devra alors se rabattre sur des techniques comme celle du RFC 4821.

L'annexe B de notre RFC résume les changements faits depuis le RFC 1981. Rien de radical, les principaux portent sur la sécurité (ce sont aussi ceux qui ont engendré le plus de discussions à l'IETF) :

  • Bien expliquer les problèmes créés par le blocage des messages ICMP,
  • Formulations plus strictes sur la validation des messages ICMP,
  • Et surtout, suppression des « fragments atomiques » (RFC 8021).

Le texte a également subi une actualisation générale, les références (pré-)historiques à BSD 4.2 ou bien à TP4 ont été supprimées.

Enfin, pour faire joli, un exemple de traceroute avec recherche de la MTU du chemin activée (option --mtu). Notez la réception d'un Packet Too Big à l'étape 12, annonçant une MTU de 1 450 octets :

% sudo traceroute -6 --mtu --udp --port=53 eu.org
traceroute to eu.org (2a02:8428:46c:5801::4), 30 hops max, 65000 byte packets
 ...
 3  vl387-te2-6-paris1-rtr-021.noc.renater.fr (2001:660:300c:1002:0:131:0:2200)  2.605 ms  2.654 ms  2.507 ms
 4  2001:660:7903:6000:1::4 (2001:660:7903:6000:1::4)  5.002 ms  4.484 ms  5.494 ms
 5  neuf-telecom.sfinx.tm.fr (2001:7f8:4e:2::178)  4.193 ms  3.682 ms  3.763 ms
 6  neuf-telecom.sfinx.tm.fr (2001:7f8:4e:2::178)  14.264 ms  11.927 ms  11.509 ms
 7  2a02-8400-0000-0003-0000-0000-0000-1006.rev.sfr.net (2a02:8400:0:3::1006)  12.760 ms  10.446 ms  11.902 ms
 8  2a02-8400-0000-0003-0000-0000-0000-1c2e.rev.sfr.net (2a02:8400:0:3::1c2e)  10.524 ms  11.477 ms  11.896 ms
 9  2a02-8400-0000-0003-0000-0000-0000-1c2e.rev.sfr.net (2a02:8400:0:3::1c2e)  13.061 ms  11.589 ms  11.915 ms
10  2a02-8400-0000-0003-0000-0000-0000-117e.rev.sfr.net (2a02:8400:0:3::117e)  10.446 ms  10.420 ms  10.361 ms
11  2a02-8400-0000-0003-0000-0000-0000-000a.rev.sfr.net (2a02:8400:0:3::a)  10.460 ms  10.453 ms  10.517 ms
12  2a02-8428-046c-5801-0000-0000-0000-00ff.rev.sfr.net (2a02:8428:46c:5801::ff)  12.495 ms F=1450  12.102 ms  11.203 ms
13  2a02-8428-046c-5801-0000-0000-0000-0004.rev.sfr.net (2a02:8428:46c:5801::4)  12.397 ms  12.217 ms  12.507 ms

La question de la fragmentation en IPv6 a suscité d'innombrables articles. Vous pouvez commencer par celui de Geoff Huston.

Merci à Pierre Beyssac pour avoir fourni le serveur de test configuré comme il fallait, et à Laurent Frigault pour la solution sur FreeBSD.


Téléchargez le RFC 8201


L'article seul

RFC 8200: Internet Protocol, Version 6 (IPv6) Specification

Date de publication du RFC : Juillet 2017
Auteur(s) du RFC : S. Deering (Retired), R. Hinden (Check Point Software)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF 6man
Première rédaction de cet article le 16 juillet 2017


Ce RFC est la nouvelle norme du protocole IPv6. IP est le protocole de base de l'Internet, la version 6 y est minoritaire mais est bien plus répandue qu'elle ne l'était lors de la sortie de la précédente norme, qui était le RFC 2460, norme que notre nouveau RFC remplace (et cela fait passer IPv6 au statut de norme Internet, la précédente étant officiellement une proposition de norme).

Pas de changements cruciaux, la norme est nouvelle, mais le protocole reste largement le même. Ce RFC 8200 continue à présenter IPv6 comme « a new version of the Internet Protocol (IP) ». Comme la première norme IPv6 est sortie en 1995, l'adjectif « new » n'est vraiment pas sérieux. Comme, malheureusement, la plupart des formations réseau ne parlent que d'IPv4 et traitent IPv6 de manière bâclée à la fin, le RFC présente IPv6 en parlant de ses différences par rapport à IPv4 (section 1 du RFC) :

  • La principale est évidemment l'espace d'adressage bien plus grand. Alors qu'IPv4, avec ses adresses sur 32 bits, ne peut même pas donner une adresse IP à chaque habitant de la planète (ce qui serait déjà insuffisant), IPv6, avec ses 128 bits d'adresse, permet de distribuer une quantité d'adresses que le cerveau humain a du mal à se représenter. Cette abondance est la principale raison pour laquelle il est crucial de migrer vers IPv6. Les autres raisons sont plus discutables.
  • IPv6 a sérieusement changé le format des options. En IPv4, les options IP étaient un champ de longueur variable dans l'en-tête, pas exactement ce qui est le plus facile à analyser pour un routeur. Le RFC dit qu'IPv6 a simplifié le format mais c'est contestable : une complexité a succédé à une autre. Désormais, le premier en-tête est de taille fixe, mais il peut y avoir un nombre quelconque d'en-têtes chaînés. Le RFC utilise malheureusement des termes publicitaires assez déconnectés de la réalité, en parlant de format plus efficace et plus souple.
  • IPv6 a un mécanisme standard pour étiqueter les paquets appartenant à un même flot de données. Mais le RFC oublie de dire qu'il semble inutilisé en pratique.
  • Et le RFC termine cette énumération par le plus gros pipeautage, prétendre qu'IPv6 aurait de meilleurs capacités d'authentification et de confidentialité. (C'est faux, elles sont les mêmes qu'en IPv4, et peu déployées, en pratique.)

Notez que ce RFC 8200 ne spécifie que le format des paquets IPv6. D'autres points très importants sont normalisés dans d'autres RFC, les adresses dans le RFC 4291, et ICMP dans le RFC 4443.

La section 3 présente le format des paquets IPv6 :

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Version| Traffic Class |           Flow Label                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Payload Length        |  Next Header  |   Hop Limit   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                                                               +
   |                                                               |
   +                         Source Address                        +
   |                                                               |
   +                                                               +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                                                               +
   |                                                               |
   +                      Destination Address                      +
   |                                                               |
   +                                                               +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    

(D'ailleurs, si quelqu'un sait pourquoi l'adresse IP source est avant la destination ? Il me semblerait plus logique que ce soit l'inverse, puisque tous les routeurs sur le trajet doivent examiner l'adresse destination, alors qu'on n'a pas toujours besoin de l'adresse source.) Le numéro de version vaut évidemment 6, le « traffic class » est présenté en section 7, le « flow label » en section 6.

Le champ « Next header » remplace le « Protocol » d'IPv4. Il peut indiquer le protocole de transport utilisé (la liste figure dans un registre IANA et est la même pour IPv4 et IPv6) mais aussi les en-têtes d'extension, une nouveauté d'IPv6, présentée en section 4 de notre RFC.

Le champ « Hop limit » remplace le « Time to Live » d'IPv4. En fait, les deux ont exactement la même sémantique, qui est celle d'un nombre maximal de routeurs utilisés sur le trajet (le but est d'éviter les boucles infinies dans le réseau). Autrefois, dans IPv4, il était prévu que ce champ soit réellement une durée, mais aucune mise en œuvre d'IPv4 ne l'avait jamais utilisé comme ceci. Le renommage dans IPv6 fait donc correspondre la terminologie avec une réalité ancienne (cf. aussi la section 8.2). Notez que c'est ce champ qui est utilisé par traceroute.

Voici une simple connexion HTTP en IPv6, vue avec tcpdump et tshark. Le client a demandé /robots.txt et a obtenu une réponse négative (404). Si vous voulez, le pcap complet est ipv6-http-connection.pcap. Voici d'abord avec tcpdump avec ses options par défaut :

15:46:21.768536 IP6 2001:4b98:dc2:43:216:3eff:fea9:41a.37703 > 2605:4500:2:245b::42.80: Flags [S], seq 3053097848, win 28800, options [mss 1440,sackOK,TS val 1963872568 ecr 0,nop,wscale 7], length 0
    

On voit les deux adresses IPv6, tcpdump n'affiche rien d'autre de l'en-tête de couche 3, tout le reste est du TCP, le protocole de transport utilisé par HTTP. Avec l'option -v de tcpdump :

15:46:21.768536 IP6 (hlim 64, next-header TCP (6) payload length: 40) 2001:4b98:dc2:43:216:3eff:fea9:41a.37703 > 2605:4500:2:245b::42.80: Flags [S] [...]
    

Cette fois, on voit le « Hop limit » (64), l'en-tête suivant (TCP, pas d'en-tête d'extension) et la longueur (40 octets). Pour avoir davantage, il faut passer à tshark (décodage complet en ipv6-http-connection.txt) :

Internet Protocol Version 6, Src: 2001:4b98:dc2:43:216:3eff:fea9:41a, Dst: 2605:4500:2:245b::42
    0110 .... = Version: 6
    .... 0000 0000 .... .... .... .... .... = Traffic class: 0x00 (DSCP: CS0, ECN: Not-ECT)
        .... 0000 00.. .... .... .... .... .... = Differentiated Services Codepoint: Default (0)
        .... .... ..00 .... .... .... .... .... = Explicit Congestion Notification: Not ECN-Capable Transport (0)
    .... .... .... 0000 0000 0000 0000 0000 = Flow label: 0x00000
    Payload length: 40
    Next header: TCP (6)
    Hop limit: 64
    Source: 2001:4b98:dc2:43:216:3eff:fea9:41a
    [Source SA MAC: Xensourc_a9:04:1a (00:16:3e:a9:04:1a)]
    Destination: 2605:4500:2:245b::42
    [Source GeoIP: France]
        [Source GeoIP Country: France]
    [Destination GeoIP: United States]
        [Destination GeoIP Country: United States]
    

On a cette fois tout l'en-tête IPv6 : notons le « Flow Label » (j'avais bien dit que peu de gens s'en servaient, il est nul dans ce cas).

La section 4 de notre RFC est dédiée à une nouveauté d'IPv6, les en-têtes d'extension. Au lieu d'un champ « Options » de taille variable (donc difficile à analyser) comme en IPv4, IPv6 met les options IP dans des en-têtes supplémentaires, chaînés avec l'en-tête principal. Par exemple, si un paquet UDP a un en-tête « Destination Options », le champ « Next header » de l'en-tête principal vaudra 60 (pour « Destination Options »), il sera suivi de l'en-tête d'extension « Destination Options » qui aura, lui, un « Next header » de 17 pour indiquer que ce qui suit est de l'UDP. (Je rappelle que les valeurs possibles pour « Next Header » sont dans un registre IANA.) Il peut y avoir zéro, un ou davantage d'en-têtes d'extension chaînés entre eux.

Notez qu'analyser cette chaîne d'en-têtes est compliqué car les en-têtes n'ont pas tous le même format (le RFC 6564 a créé un format unique, mais cela ne concerne que les futurs en-têtes.) Il est donc exagéré de dire que la suppression du champ « Options » de taille variable a simplifié les choses.

Les différents en-têtes ne sont pas tous traités pareillement par les routeurs. Il existe notamment un en-tête, « Hop-by-hop Options » qui doit être examiné par tous les routeurs du trajet (cette obligation, jamais respectée, a de toute façon été relâchée par rapport au RFC 2460). C'est pour cela qu'il doit être placé au début des en-têtes, juste après l'en-tête principal. Les autres en-têtes d'extension doivent être ignorés par les routeurs.

Comme il est compliqué de rajouter un nouveau modèle d'en-tête (il faudrait modifier toutes les machines IPv6), une solution légère existe pour les options simples : utiliser les en-têtes d'options, « Hop-by-hop Options » et « Destination Options ». Tous les deux sont composés d'une série d'options encodées en TLV. En outre, le type de l'option indique, dans ses deux premiers bits, le traitement à appliquer au paquet si le système ne connait pas cette option. Si les deux premiers bits sont à zéro, on ignore l'option et on continue. Autrement, on jette le paquet (les trois valeurs restantes, 01, 10 et 11, indiquent si on envoie un message d'erreur ICMP et lequel). Ainsi, l'option pour la destination de numéro 0x07 (utilisée par le protocole de sécurité du RFC 5570) est facultative : elle a les deux premiers bits à zéro et sera donc ignorée silencieusement par les destinataires qui ne la connaissent pas (cf. registre IANA.)

« Destination Options », comme son nom l'indique, n'est examinée que par la machine de destination. Si vous voulez envoyer des paquets avec cet en-tête, regardez mon article.

Outre les en-têtes « Hop-by-hop Options » et « Destination Options », il existe des en-têtes :

  • « Routing Header », qui permet de spécifier le routage depuis la source (un peu comme les options de « source routing » en IPv4). Il y a plusieurs types, et les valeurs possibles sont dans un registre IANA, géré suivant les principes du RFC 5871. (Le type 0 a été retiré depuis le RFC 5095.)
  • « Fragment Header », qui permet de fragmenter les paquets de taille supérieure à la MTU.
  • Les autres en-têtes sont ceux utilisés par IPsec, décrits dans les RFC 4302 et RFC 4303.

La fragmentation est différente de celle d'IPv4. En IPv6, seule la machine émettrice peut fragmenter, pas les routeurs intermédiaires. Si le paquet est plus grand que la MTU, on le découpe en fragments, chaque fragment portant un « Fragment Header ». Cet en-tête porte une identification (un nombre sur 32 bits qui doit être unique parmi les paquets qui sont encore dans le réseau), un décalage (offset) qui indique à combien d'octets depuis le début du paquet original se situe ce fragment (il vaut donc zéro pour le premier fragment) et un bit qui indique si ce fragment est le dernier. À la destination, le paquet est réassemblé à partir des fragments. (Il est désormais interdit que ces fragments se recouvrent, cf. RFC 5722.) Voici un exemple de fragmentation. La sonde Atlas n° 6271 a interrogé un serveur DNS de la racine Yeti avec le type de question ANY qui signifie « envoie-moi tout ce que tu peux / veux ». La réponse, plus grande que la MTU (plus de quatre kilo-octets !), a été fragmentée en trois paquets (le pcap complet est en ipv6-dns-frag.pcap) :

16:14:27.112945 IP6 2001:67c:217c:4::2.60115 > 2001:4b98:dc2:45:216:3eff:fe4b:8c5b.53: 19997+ [1au] ANY? . (28)
16:14:27.113171 IP6 2001:4b98:dc2:45:216:3eff:fe4b:8c5b > 2001:67c:217c:4::2: frag (0|1232) 53 > 60115: 19997*- 35/0/1 NS bii.dns-lab.net., NS yeti.bofh.priv.at., NS yeti.ipv6.ernet.in., NS yeti.aquaray.com., NS yeti.mind-dns.nl., NS dahu1.yeti.eu.org., NS dahu2.yeti.eu.org., NS yeti1.ipv6.ernet.in., NS ns-yeti.bondis.org., NS yeti-ns.ix.ru., NS yeti-ns.lab.nic.cl., NS yeti-ns.tisf.net., NS yeti-ns.wide.ad.jp., NS yeti-ns.conit.co., NS yeti-ns.datev.net., NS yeti-ns.switch.ch., NS yeti-ns.as59715.net., NS yeti-ns1.dns-lab.net., NS yeti-ns2.dns-lab.net., NS yeti-ns3.dns-lab.net., NS xn--r2bi1c.xn--h2bv6c0a.xn--h2brj9c., NS yeti-dns01.dnsworkshop.org., NS yeti-dns02.dnsworkshop.org., NS 3f79bb7b435b05321651daefd374cd.yeti-dns.net., NS ca978112ca1bbdcafac231b39a23dc.yeti-dns.net., RRSIG, NSEC, RRSIG[|domain]
16:14:27.113187 IP6 2001:4b98:dc2:45:216:3eff:fe4b:8c5b > 2001:67c:217c:4::2: frag (1232|1232)
16:14:27.113189 IP6 2001:4b98:dc2:45:216:3eff:fe4b:8c5b > 2001:67c:217c:4::2: frag (2464|637)
    

On note que tcpdump n'a interprété qu'un seul fragment comme étant du DNS, la premier, puisque c'était le seul qui portait l'en-tête UDP, avec le numéro de port 53 identifiant du DNS. Dans le résultat de tcpdump, après le mot-clé frag, on voit le décalage du fragment par rapport au début du paquet original (respectivement 0, 1232 et 2464 pour les trois fragments), et la taille du fragment (respectivement 1232, 1232 et 637 octets). Vu par tshark (l'analyse complète est en ipv6-dns-frag.txt), le premier fragment contient :

    
    Type: IPv6 (0x86dd)
Internet Protocol Version 6, Src: 2001:4b98:dc2:45:216:3eff:fe4b:8c5b, Dst: 2001:67c:217c:4::2
    Payload length: 1240
    Next header: Fragment Header for IPv6 (44)
    Fragment Header for IPv6
        Next header: UDP (17)
        Reserved octet: 0x00
        0000 0000 0000 0... = Offset: 0 (0 bytes)
        .... .... .... .00. = Reserved bits: 0
        .... .... .... ...1 = More Fragments: Yes
        Identification: 0xcbf66a8a
Data (1232 bytes)

On note le « Next Header » qui indique qu'un en-tête d'extension, l'en-tête « Fragmentation », suit l'en-tête principal. Le bit M (« More Fragments ») est à 1 (ce n'est que le premier fragment, d'autres suivent), le décalage (« offset ») est bien sûr de zéro. L'identificateur du paquet est de 0xcbf66a8a. Le dernier fragment, lui, contient :

Internet Protocol Version 6, Src: 2001:4b98:dc2:45:216:3eff:fe4b:8c5b, Dst: 2001:67c:217c:4::2
    Payload length: 645
    Next header: Fragment Header for IPv6 (44)
    Fragment Header for IPv6
        Next header: UDP (17)
        Reserved octet: 0x00
        0000 1001 1010 0... = Offset: 308 (2464 bytes)
        .... .... .... .00. = Reserved bits: 0
        .... .... .... ...0 = More Fragments: No
        Identification: 0xcbf66a8a

Cette fois, le « Next Header » indique que c'est de l'UDP qui suit, le décalage est de 2464, et le bit M est à zéro (plus d'autres fragments). L'identificateur est le même, c'est celui du paquet original, et c'est grâce à lui que la machine de destination saura réassembler les fragments. Notez qu'à la fin de l'analyse par tshark figure un réassemblage complet du paquet, ce qui permet une analyse DNS complète.

Et si je ne suis pas satisfait des en-têtes d'extension existants et que je veux créer le mien ? C'est en général une mauvaise idée. La plupart des cas concrets devraient être résolus avec un des en-têtes déjà normalisés. Notamment, l'en-tête « Destination Options » est là pour la majorité des situations. C'est lui qu'il faut regarder en premier (ce qu'ont fait les RFC 6744, RFC 6788 ou RFC 7837, la liste complète figurant dans un registre IANA). Notre RFC 8200 exige donc que, si vous tenez à créer un nouvel en-tête, vous expliquiez bien pourquoi c'est indispensable, et pourquoi aucun des en-têtes existants ne convient.

Il est également déconseillé de créer de nouvelles options « hop-by-hop » (la liste actuelle est à l'IANA), car ces options doivent être traitées par tous les routeurs du trajet. Il y a un risque sérieux qu'ils laissent tomber les paquets ayant cet en-tête « Hop-by-hop Options », ou bien qu'ils le traitent plus lentement (logiciel du routeur et pas circuits matériels spécialisés). Là aussi, il faudra donc une justification sérieuse.

La section 5 de notre RFC se penche sur un problème délicat, la taille des paquets. IPv6 exige une MTU d'au moins 1 280 octets, mais les paquets sont souvent plus grands (par exemple 1 500 octets si on part d'un Ethernet). Beaucoup de liens ont, en pratique, une MTU de 1 500 octets mais IPv6 étant souvent porté par des tunnels (en raison de l'immobilisme de beaucoup de FAI, qui ne déploient toujours pas IPv6), un certain nombre de liens offrent moins de 1 500 octets. Normalement, l'émetteur d'un paquet IPv6 doit faire de la découverte de la MTU du chemin (RFC 8201) afin de pouvoir fragmenter, si nécessaire. Une mise en œuvre « paresseuse » d'IPv6 pourrait se dispenser de découverte de la MTU du chemin, et se limiter à 1 280 octets par paquet.

Le problème est que la découverte de la MTU du chemin dépend du bon fonctionnement d'ICMP. L'émetteur d'un paquet doit pouvoir recevoir les paquets ICMP « Packet too big » (RFC 4443, section 3.2). Or, un certain nombre de pare-feux, stupidement configurés par des amateurs, bloquent tout ICMP « pour des raisons de sécurité » (c'est d'ailleurs une bonne question pour les entretiens d'embauche d'un administrateur de réseaux : « filtrer ICMP en entrée ou pas ? » S'il répond Oui, on est sûr qu'il est incompétent.) Ne recevant pas les « Packet too big », l'émetteur risque de croire à tort que ses paquets sont passés. En outre, si l'émetteur décide de fragmenter (en général, quand la MTU du chemin est inférieure à la sienne, avec TCP, on réduit la MSS, avec UDP, on fragmente), il faut que les fragments passent à travers le réseau. Et, là encore, un certain nombre de pare-feux bêtement configurés bloquent les fragments. Donc, en pratique, découverte du chemin + fragmentation est un processus fragile, en raison de ce véritable sabotage par des middleboxes.

C'est certainement le plus gros problème pratique lors du déploiement d'IPv6. On peut même penser à prendre des mesures radicales et coûteuses, comme d'abaisser la MTU à 1 280 octets pour être tranquille. Moins violent, il est fréquent de voir des MTU à 1 480 octets. Voici par exemple la configuration de mon routeur Turris Omnia pour passer par l'IPv6 de Free (un tunnel) :

config interface 'lan'
	option ip6assign '64'
	option ip6addr '2001:db8:42::1:fe/64'
	option ip6prefix '2001:db8:42::/64'
	option ip6gw '2001:db8:42::1'
	option mtu '1480'
    

Et le « flow label », dont j'avais parlé plus haut ? Il est décrit dans la (très courte) section 6, qui renvoie surtout au RFC 6437. En pratique, ce champ semble peu utilisé comme on l'a vu dans l'exemple décodé par tshark.

Même chose pour le « traffic class », en section 7 : pour son utilisation pour la différenciation de trafic, voir les RFC 2474 et RFC 3168.

Maintenant qu'IPv6, protocole de couche 3, a été bien défini, le RFC monte vers la couche 4, en consacrant sa section 8 aux problèmes des couches supérieures. Cela concerne notamment la somme de contrôle. Si vous avez fait attention au schéma de l'en-tête IPv6 de la section 3, vous avez noté qu'il n'y avait pas de champ « Header Checksum », contrairement à ce qui existait en IPv4. En IPv6, pas de somme de contrôle en couche 3, c'était une tâche supplémentaire pour les routeurs (pour citer le RFC 791, « Since some header fields change (e.g., time to live), this is recomputed and verified at each point that the internet header is processed. »), tâche dont ils sont désormais dispensés.

Par contre, la somme de contrôle existe pour les en-têtes de couche 4 et elle devient même obligatoire pour UDP (elle était facultative en IPv4, quoique très fortement recommandée). (Voir le RFC 1071, au sujet de cette somme de contrôle.)

Un gros changement de ce RFC par rapport à son prédécesseur, le RFC 2460, concerne la sécurité. La section sur la sécurité est passée d'une annexe de deux lignes (qui se contentait de passer le bébé à IPsec) à une analyse plus détaillée (section 10 du RFC). La question est délicate car la sécurité d'IPv6 a souvent fait l'objet de FUD, visant à justifier l'immobilisme de pas mal d'acteurs. Il est évidemment plus valorisant de dire « nous ne migrons pas vers IPv6 pour des raisons de sécurité » que de reconnaitre « nous sommes trop flemmards et paralysés par la peur du changement ». (Cf. mon exposé sur la sécurité d'IPv6 à l'ESGI.) S'il fallait synthétiser (la deuxième partie de cette synthèse ne figure pas dans le RFC), je dirais :

  • La sécurité d'IPv6 est quasiment la même qu'en IPv4 (ce qui est logique, il ne s'agit après tout que de deux versions du même protocole). Les grandes questions de sécurité d'IPv4 (usurpation d'adresse source, relative facilité à faire des attaques par déni de service, pas d'authentification ou de confidentialité par défaut) sont exactement les mêmes en IPv6. (C'est une blague courante à l'IETF de dire que si IPv4, l'un des plus grands succès de l'ingéniérie du vingtième siècle, était présenté à l'IESG aujourd'hui, il serait rejeté pour sa trop faible sécurité.)
  • Par contre, en pratique, les solutions techniques d'attaque et de défense, ainsi que les compétences des attaquants et des défenseurs, sont bien plus faibles en IPv6. Pas mal de logiciels « de sécurité » ne gèrent pas IPv6, bien des logiciels de piratage ne fonctionnent qu'en IPv4, les administrateurs système sont déroutés face à une attaque IPv6, et les pirates ne pensent pas à l'utiliser. (Faites l'expérience : configurez un pot de miel SSH en IPv4 et IPv6. Vous aurez plusieurs connexions par jour en IPv4 et jamais une seule en IPv6.) L'un dans l'autre, je pense que ces deux aspects s'équilibrent.

Bon, assez de stratégie, passons maintenant aux problèmes concrets que décrit cette section 10. Elle rappelle des risques de sécurité qui sont exactement les mêmes qu'en IPv4 mais qu'il est bon de garder en tête, ce sont des problèmes fondamentaux d'IP :

  • Communication en clair par défaut, donc espionnage trop facile pour les États, les entreprises privées, les pirates individuels. (Cf. Snowden.)
  • Possibilité de rejouer des paquets déjà passés, ce qui permet certaines attaques. Dans certains cas, on peut modifier le paquet avant de le rejouer, et ça passera.
  • Possibilité de générer des faux paquets et de les injecter dans le réseau.
  • Attaque de l'homme du milieu : une entité se fait passer pour l'émetteur auprès du vrai destinataire, et pour le destinataire auprès du vrai émetteur.
  • Attaque par déni de service, une des plaies les plus pénibles de l'Internet.

En cohérence avec le RFC 2460 (mais pas avec la réalité du terrain), notre RFC recommande IPsec (RFC 4301) comme solution à la plupart de ces problèmes. Hélas, depuis le temps qu'il existe, ce protocole n'a jamais connu de déploiement significatif sur l'Internet public (il est par contre utilisé dans des réseaux privés, par exemple le VPN qui vous permet de vous connecter avec votre entreprise de l'extérieur utilise probablement une variante plus ou moins standard d'IPsec). Une des raisons de ce faible déploiement est la grande complexité d'IPsec, et la complexité pire encore de ses mises en œuvre. En pratique, même si le RFC ne le reconnait que du bout des lèvres, ce sont les protocoles applicatifs comme SSH ou TLS, qui sécurisent l'Internet.

Pour les attaques par déni de service, par contre, aucune solution n'est proposée : le problème ne peut pas forcément se traiter au niveau du protocole réseau.

La différence la plus spectaculaire entre IPv4 et IPv6 est évidemment la taille des adresses. Elle rend le balayage bien plus complexe (mais pas impossible), ce qui améliore la sécurité (l'Internet IPv4 peut être exploré incroyablement vite, par exemple avec masscan, et, si on est trop flemmard pour balayer soi-même, on peut utiliser des balayages déjà faits, par exemple par Shodan ou https://scans.io/). Le RFC 7707 fait une très bonne synthèse de l'état de l'art en matière de balayage IPv6. Par exemple, Shodan, cité plus haut, doit utiliser des techniques assez douteuses pour récolter des adresses IPv6 à examiner.

Et qu'en est-il de la vie privée ? L'argument, largement FUDé, a été beaucoup utilisé contre IPv6. Le RFC note qu'IPv6 a entre autre pour but de rendre inutile l'usage du NAT, dont certaines personnes prétendent qu'il protège un peu les utilisateurs. L'argument est largement faux : le NAT (qui est une réponse à la pénurie d'adresses IPv4, pas une technique de sécurité) ne protège pas contre tout fingerprinting, loin de là. Et, si on veut empêcher les adresses IP des machines du réseau local d'être visibles à l'extérieur, on peut toujours faire du NAT en IPv6, si on veut, ou bien utiliser des méthodes des couches supérieures (comme un relais).

Autre question de vie privée avec IPv6, les adresses IP fondées sur l'adresse MAC. Cette ancienne technique, trop indiscrète, a été abandonnée avec les RFC 4941 et RFC 7721, le premier étant très déployé. Il est curieux de constater que cet argument soit encore utilisé, alors qu'il a perdu l'essentiel de sa (faible) pertinence.

Mais il y avait bien des problèmes de sécurité concrets avec le précédent RFC 2460, et qui sont réparés par ce nouveau RFC :

  • Les « fragments atomiques » ne doivent désormais plus être générés (RFC 8021) et, si on en reçoit, doivent être « réassemblés » par une procédure spéciale (RFC 6946).
  • Les fragments qui se recouvrent partiellement sont désormais interdits (cf. RFC 5722, le réassemblage des fragments en un paquet est déjà assez compliqué et sujet à erreur comme cela).
  • Si le paquet est fragmenté, les en-têtes d'extension doivent désormais tous être dans le premier fragment (RFC 7112).
  • L'en-tête de routage (Routing Header) de type 0, dit « RH0 », est abandonné, il posait trop de problèmes de sécurité (cf. RFC 5095 et RFC 5871).

L'annexe B de notre RFC résume les changements depuis le RFC 2460. Pas de choses révolutionnaires, les changements les plus importantes portaient sur la sécurité, comme listé un peu plus haut (section 10 du RFC). On notera comme changements :

  • [Section 1] Clarification que IPv6 est gros-boutien, comme IPv4 (cf. l'annexe B du RFC 791).
  • [Section 3] Clarification de l'utilisation du « hop limit », décrémenté de 1 à chaque routeur.
  • [Section 4] Clarification du fait qu'un équipement intermédiaire ne doit pas tripoter les en-têtes d'extension (à part évidemment « Hop-by-hop Options »), ni les modifier, ni en ajouter ou retirer, ni même les lire.
  • [Section 4] Le traitement de l'en-tête « Hop-by-hop Options par les routeurs sur le trajet n'est plus obligatoire. Si un routeur est pressé, il peut s'en passer (le RFC suit ainsi la pratique).
  • [Section 4.4] Suppression de l'en-tête de routage de type 0.
  • [Section 4.5] Pas mal de changements sur la fragmentation (un processus toujours fragile !), notamment l'abandon des fragments atomiques.
  • [Section 4.8] Intégration du format unique des éventuels futurs en-têtes d'extension, format initialement présenté dans le RFC 6564.
  • [Section 6] Reconnaissance du fait que « Flow Label » n'était pas réellement bien défini, et délégation de cette définition au RFC 6437.
  • [Section 8.1] Autorisation, dans certains cas bien délimités, d'omission de la somme de contrôle UDP (RFC 6935).
  • Il y a eu également correction de diverses erreurs comme les 2541 (omission sur la définition du « Flow Label ») et 4279 (paquet entrant avec un « Hop Limit » déjà à zéro).

Le projet de mise à jour de la norme IPv6 avait été lancé en 2015 (voici les supports du premier exposé).

D'habitude, je termine mes articles sur les RFC par des informations sur l'état de mise en œuvre du RFC. Mais, ici, il y en a tellement que je vous renvoie plutôt à cette liste. Notez que des tests d'interopérabilité ont été faits sur les modifications introduites par ce nouveau RFC et que les résultats publiés n'indiquent pas de problème.

Parmi les publications récentes sur le déploiement d'IPv6, signalons :


Téléchargez le RFC 8200


L'article seul

RFC 8198: Aggressive Use of DNSSEC-Validated Cache

Date de publication du RFC : Juillet 2017
Auteur(s) du RFC : K. Fujiwara (JPRS), A. Kato (Keio/WIDE), W. Kumari (Google)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF dnsop
Première rédaction de cet article le 26 juillet 2017


Lorqu'un client DNS interroge un résolveur, celui-ci peut répondre très vite si l'information demandée est dans sa mémoire (son « cache ») mais cela peut être beaucoup plus lent s'il faut aller demander aux serveurs faisant autorité. Il est donc essentiel, pour les performances du DNS, d'utiliser le cache le plus possible. Traditionnellement, le résolveur n'utilisait le cache que si la question posée par le client avait une réponse exacte dans le cache. Mais l'arrivée de DNSSEC autorise un usage plus énergique et plus efficace du cache : ce nouveau RFC permet aux résolveurs de synthétiser des réponses à partir des informations DNSSEC.

Comment peut-il faire ? Eh bien prenons par exemple les enregistrements NSEC. Ils indiquent une plage où il n'y a pas de noms enregistrés. Ainsi, si une zone example.com contient :

albatross IN AAAA 2001:db8:1028::a:1
elephant  IN AAAA 2001:db8:1028::a:2
zebra     IN AAAA 2001:db8:1028::a:3
    

Sa signature DNSSEC va ajouter des enregistrements NSEC, notamment :

albatross.example.com. IN NSEC elephant.example.com. AAAA    

qui veut dire qu'il n'y a pas de nom entre albatross et elephant. Si le client interroge le résolveur à propos de cat.example.com, le résolveur ira voir les serveurs faisant autorité, il aura une réponse négative (NXDOMAIN, ce nom n'existe pas) et l'enregistrement NSEC. Les deux informations seront renvoyées au client, et pourront être mémorisées dans le cache. Maintenant, si le client demande dog.example.com, les résolveurs traditionnels retourneront demander aux serveurs faisant autorité. Alors que les résolveurs modernes, conformes à ce nouveau RFC 8198, pourront déduire du NSEC que dog.example.com n'existe pas non plus, et immédiatement générer un NXDOMAIN pour le client. Cela fera gagner du temps et des efforts à tout le monde. (Les règles exactes sont dans la section 5.1 de notre RFC.)

La règle (désormais dépassée) comme quoi le résolveur ne peut répondre immédiatement que s'il a l'information correspondant à la question exacte est spécifiée dans le RFC 2308, pour le cache négatif (mémoriser les réponses NXDOMAIN). Désormais, elle n'est plus obligatoire si (et seulement si, voir section 9) le résolveur valide avec DNSSEC, et si la zone est signée (aucun changement si elle ne l'est pas). Outre le cas simple de NSEC avec des réponses négatives, présenté plus haut, il y a deux cas plus complexes, les enregistrements NSEC3, et les jokers. Si la zone est signée avec NSEC3 au lieu de NSEC, les enregistrements NSEC3 indiqueront des condensats et pas des noms et le résolveur devra donc condenser le nom demandé, pour voir s'il tombe dans un NSEC3 connu, et si on peut synthétiser le NXDOMAIN. Les règles exactes sur les NSEC3 sont dans le RFC 5155 (attention, c'est compliqué), sections 8.4 à 8.7, et dans notre RFC, section 5.2. Évidemment, si la zone est signée avec l'option « opt-out » (c'est le cas de la plupart des TLD), le résolveur ne peut pas être sûr qu'il n'y a pas un nom non signé dans une plage indiquée par un enregistrement NSEC, et ne peut donc pas synthétiser. Tout aussi évidemment, toute solution qui empêchera réellement l'énumération des noms dans une zone signée (comme le projet NSEC5) sera incompatible avec cette solution.

Si la zone inclut des jokers (RFC 1034, section 4.3.3), par exemple example.org :

    
avocado   IN A 192.0.2.1
*         IN A 192.0.2.2
zucchini IN A 192.0.2.3

Alors, le résolveur pourra également synthétiser des réponses positives. S'il a déjà récupéré et mémorisé le joker, et que le client lui demande l'adresse IPv4 de leek.example.org, le résolveur pourra tout de suite répondre 192.0.2.2. (J'ai simplifié : le résolveur doit aussi vérifier que le nom leek.example.org n'existe pas, ou en tout cas n'a pas d'enregistrement A. Le joker ne masque en effet pas les noms existants. Détails en section 5.3 du RFC.)

Pour cette utilisation plus énergique de la mémoire d'un résolveur validant, il a fallu amender légèrement le RFC 4035, dont la section 4.5 ne permettait pas cette synthèse de réponses (la nouvelle rédaction est en section 7). Notez un inconvénient potentiel de cette synthèse : un nom ajouté ne sera pas visible tout de suite. Mais c'est de toute façon une propriété générale du DNS et de ses caches souvent appelée, par erreur, « durée de propagation ».

La durée exacte pendant laquelle le résolveur « énergique » pourra garder les informations qui lui servent à la synthèse des réponses est donnée par le TTL des NSEC.

Quel intérêt à cette synthèse énergique de réponses ? Comme indiqué plus haut, cela permet de diminuer le temps de réponse (section 6). Du fait de la diminution de nombre de questions à transmettre, cela se traduira également par une diminution de la charge, et du résolveur, et du serveur faisant autorité. Sur la racine du DNS, comme 65 % des requêtes entrainent un NXDOMAIN (voir par exemple les statistiques de A-root), le gain devrait être important. Un autre avantage sera pour la lutte contre les attaques dites « random QNAMEs » lorsque l'attaquant envoie plein de requêtes pour des noms aléatoires (générant donc des NXDOMAIN). Si l'attaquant passe par un résolveur, celui-ci pourra écluser la grande majorité des requêtes sans déranger le serveur faisant autorité.

Mais la synthèse énergique entraine aussi un gain en matière de vie privée (cf. RFC 7626) : les serveurs faisant autorité verront encore moins de questions.

Cette technique de « cache négatif énergique » avait été proposée pour la première fois dans la section 6 du RFC 5074. Elle s'inscrit dans une série de propositions visant à augmenter l'efficacité des caches DNS, comme le « NXDOMAIN cut » du RFC 8020. La synthèse énergique de réponses prolonge le RFC 8020, en allant plus loin (mais elle nécessite DNSSEC).

Il semble que Google Public DNS mette déjà en œuvre une partie (les réponses négatives) de ce RFC, mais je n'ai pas encore vérifié personnellement.


Téléchargez le RFC 8198


L'article seul

RFC 8197: A SIP Response Code for Unwanted Calls

Date de publication du RFC : Juillet 2017
Auteur(s) du RFC : H. Schulzrinne (FCC)
Chemin des normes
Première rédaction de cet article le 18 juillet 2017


Voici un RFC qui n'est pas trop long à lire ou à comprendre : il ajoute un code de réponse au protocole SIP (utilisé surtout pour la téléphonie sur IP), le code 607 qui dit explicitement « je n'ai pas envie de répondre à cet appel ».

Sur certaines lignes téléphoniques, la majorité des appels entrants sont du spam (cf. RFC 5039), du genre salons de beauté ou remplacements de fenêtres, voire appels automatiques en faveur d'un candidat politicien. Toute méthode de lutte contre ce spam nécessite d'avoir un retour des utilisateurs, qui déclarent « je ne veux pas de cet appel ». Simplement raccrocher ne suffit pas, il faut permettre à l'utilisateur de déclarer explicitement la spamicité d'un appel. (Les codes de rejet existants comme 603 - RFC 3261, section 21.6.2 - ne sont pas assez spécifiques. 603 indique typiquement un rejet temporaire, du genre je suis à table, ne me dérangez pas maintenant.)

C'est désormais possible avec ce nouveau code de retour 607, enregistré à l'IANA. Le logiciel de l'utilisateur enverra ce code (il aura typiquement un bouton « rejet de ce spam » comme c'est le cas pour les logiciels de courrier), et il pourra être utilisé pour diverses techniques anti-spam (par exemple par un fournisseur SIP pour déterminer que tel numéro ne fait que du spam et peut donc être bloqué). La FCC (pour laquelle travaille l'auteur du RFC) avait beaucoup plaidé pour un tel mécanisme.

Notez que l'interprétation du code sera toujours délicate, car il peut y avoir usurpation de l'identité de l'appelant (section 6 de notre RFC, et aussi RFC 4474) ou tout simplement réaffectation d'une identité à un nouvel utilisateur, innocent de ce qu'avait fait le précédent. Au passage, dans SIP, l'identité de l'appelant peut être un URI SIP ou bien un numéro de téléphone, cf. RFC 3966.

Le code aurait dû être 666 (le nombre de la Bête) mais le code 607 a été finalement choisi pour éviter des querelles religieuses. (Le RFC 7999 n'a pas eu les mêmes pudeurs.)

L'action (ou l'inaction) suivant une réponse 607 dépendra de la politique de chaque acteur. (La discussion animée à l'IETF avait surtout porté sur ce point.) Comme toujours dans la lutte contre le spam, il faudra faire des compromis entre trop de faux positifs (on refuse des messages légitimes) et trop de faux négatifs (on accepte du spam). D'autant plus que l'utilisateur peut être malveillant (rejeter comme spam des appels légitimes dans l'espoir de faire mettre l'appelant sur une liste noire) ou simplement incompétent (il clique un peu au hasard). Les signalements sont donc à prendre avec des pincettes (section 6 du RFC).


Téléchargez le RFC 8197


L'article seul

RFC 8195: Use of BGP Large Communities

Date de publication du RFC : Juin 2017
Auteur(s) du RFC : J. Snijders, J. Heasley (NTT), M. Schmidt (i3D.net)
Pour information
Réalisé dans le cadre du groupe de travail IETF grow
Première rédaction de cet article le 1 juillet 2017


Le RFC 8092 a normalisé la notion de « grande communauté » BGP, des données attachées aux annonces de routes, plus grandes que les précédentes « communautés » et permettant donc de stocker davantage d'informations. Ce nouveau RFC explique à quoi peuvent servir ces grandes communautés et donne des exemples d'utilisation. Un document concret, qui ravira les opérateurs réseaux.

Le RFC original sur les communautés BGP était le RFC 1997, et il était accompagné d'un RFC 1998 présentant des cas concrets d'utilisation. C'est la même démarche qui est faite ici, de faire suivre le document de normalisation, le RFC 8092, d'un document décrivant des utilisations dans le monde réel (avec des expériences pratiques décrites à NANOG ou NLnog).

Un petit rappel des grandes communautés, d'abord (section 2 du RFC). Chaque communauté se compose de trois champs de quatre octets chacun. Le premier champ se nomme GA, pour Global Administrator, et sa valeur est le numéro de l'AS qui a ajouté cette communauté (rappelez-vous que les numéros d'AS font désormais quatre octets), ce qui assure l'unicité mondiale des communautés. Les deux autres champs portent les noms peu imaginatifs de Local Data Part 1 et Local Data Part 2. La plupart du temps, on se sert du premier pour identifier une fonction, et du second pour identifier les paramètres d'une fonction. Notez qu'il n'existe pas de standard pour ces deux champs locaux : comme leur nom l'indique, chaque AS les affecte comme il veut. Une même valeur peut donc avoir des significations différentes selon l'AS.

Le RFC contient plusieurs exemples, qui utilisent à chaque fois la même topologie : un transitaire, l'AS 65551, avec un client, l'AS 64497, qui est lui-même transitaire pour les AS 64498 et 64499, qui par ailleurs ont une relation de peering (en épais sur l'image) example-bgp-large-comm.png :

Notre RFC classe les communautés en deux catégories : celles d'information et celles d'action. Les premières servent à distribuer des informations qui ne modifieront pas le comportement des routeurs, mais pourront être utiles pour le déboguage, ou les statistiques. Un exemple est l'ajout d'une communauté pour indiquer dans quel pays on a appris telle route. Elles sont typiquement ajoutées par l'AS qui a défini ces informations, et il mettra donc son numéro d'AS dans le champ GA. Les secondes, les communautés d'action, servent à indiquer une action souhaitée. Elles sont définies par l'AS qui aura à agir, et mises dans le message BGP par un de ses pairs. Un exemple est une communauté pour indiquer à son pair quelle préférence on souhaite qu'il attribue à telle route.

La section 3 donne des exemples de communautés d'information. Le premier est celui où l'AS 66497 marque les routes qu'il a reçues avec une communauté qui indique le pays où la route a été apprise (le code pays utilisé est celui de ISO 3166-1). La fonction a reçu le numéro 1. Donc, la présence dans l'annonce BGP de la communauté 64497:1:528 indique une route apprise aux Pays-Bas, la communauté 64497:1:392 indique le Japon, etc. Le même opérateur peut aussi prévoir une fonction 2 pour indiquer la région (concept plus vaste que le pays), en utilisant les codes M.49 : 64497:2:2 dit que la route a été apprise en Afrique, 64497:2:150 en Europe et ainsi de suite. Rappelez-vous bien que la signification d'une fonction (et donc des paramètres qui suivent) dépend de l'AS (ou, plus rigoureusement, du champ GA). Il n'y a pas de standardisation des fonctions. Si vous voyez une communauté 65551:2:2, cela ne signifie pas forcément que la route vient d'Afrique : l'AS 65551 peut utiliser la fonction 2 pour tout à fait autre chose.

À part l'origine géographique d'une route, il est souvent utile de savoir si la route a été apprise d'un pair ou d'un transitaire. Le RFC donne l'exemple d'une fonction 3 où le paramètre 1 indique une route interne, 2 une route apprise d'un client, 3 d'un pair et 4 d'un transitaire. Ainsi, la communauté 64497:3:2 nous dit que la route vient d'un client de l'AS 64497.

Une même annonce de route peut avoir plusieurs communautés. Une route étiquetée 64497:1:528, 64497:2:150 et 64497:3:3 vient donc d'un pair aux Pays-Bas.

Et les communautés d'action (section 4 du RFC) ? Un premier exemple est celui où on indique à son camarade BGP de ne pas exporter inconditionnellement une route qu'on lui annonce (ce qui est le comportement par défaut de BGP). Mettons que c'est la fonction 4. (Vous noterez qu'il n'existe pas d'espace de numérotation de fonctions distinct pour les communautés d'information et d'action. On sait que la fonction 4 est d'action uniquement si on connait la politique de l'AS en question.) Mettons encore que l'AS 64497 a défini le paramètre comme étant un numéro d'AS à qui il ne faut pas exporter la route. Ainsi, envoyer à l'AS 64497 une route étiquetée 64497:4:64498 signifierait « n'exporte pas cette route à l'AS 64498 ». De la même façon, on peut imaginer une fonction 5 qui utilise pour cette non-exportation sélective le code pays. 64997:5:392 voudrait dire « n'exporte pas cette route au Japon ». (Rappelez-vous que BGP est du routage politique : son but principal est de permettre de faire respecter les règles du business des opérateurs.)

Je me permets d'enfoncer le clou : dans les communautés d'action, l'AS qui ajoute une communauté ne met pas son numéro d'AS dans le champ GA, mais celui de l'AS qui doit agir.

Un autre exemple de communauté d'action serait un allongement sélectif du chemin d'AS. On allonge le chemin d'AS en répétant le même numéro d'AS lorsqu'on veut décourager l'utilisation d'une certaine route. (En effet, un des facteurs essentiels d'une décision BGP est la longueur du chemin d'AS : BGP préfère le plus court.) Ainsi, l'exemple donné utilise la fonction 6 avec comme paramètre l'AS voisin où appliquer cet allongement (prepending). 64497:6:64498 signifie « ajoute ton AS quand tu exportes vers 64498 ».

Quand on gère un routeur BGP multihomé, influencer le trafic sortant est assez simple. On peut par exemple mettre une préférence plus élevée à la sortie vers tel transitaire. Influencer le trafic entrant (par exemple si on veut que le trafic vienne surtout par tel transitaire) est plus délicat : on ne peut pas configurer directement la politique des autres AS. Certains partenaires BGP peuvent permettre de définir la préférence locale (RFC 4271, section 5.1.5), via une communauté. Ici, le RFC donne l'exemple d'une fonction 8 qui indique « mets la préférence d'une route client [a priori une préférence élevée] », 10 une route de peering, 11 de transit et 12 une route de secours, à n'utiliser qu'en dernier recours (peut-être parce qu'elle passe par un fournisseur cher, ou bien de mauvaise qualité). Le paramètre (le troisième champ de la communauté) n'est pas utilisé. Alors, la communauté 64997:12:0 signifiera « AS 64997, mets à cette route la préférence des routes de secours [a priori très basse] ».

Le RFC suggère aussi, si le paramètre est utilisé, de le prendre comme indiquant la région où cette préférence spécifique est appliquée. Par exemple 64997:10:5 demandera à l'AS 64997 de mettre la préférence des routes de peering (10) à tous les routeurs en Amérique du Sud (code 5 de la norme M.49).

Attention, changer la préférence locale est une arme puissante, et sa mauvaise utilisation peut mener à des coincements (RFC 4264).

Dernier exemple donné par notre RFC, les souhaits exprimés à un serveur de routes (RFC 7947). Ces serveurs parlent en BGP mais ne sont pas des routeurs, leur seul rôle est de redistribuer l'information aux routeurs. Par défaut, tout est redistribué à tout le monde (RFC 7948), ce qui n'est pas toujours ce qu'on souhaite. Si on veut une politique plus sélective, certains serveurs de route documentent des communautés que les clients du serveur peuvent utiliser pour influencer la redistribution des routes. Notre RFC donne comme exemple une fonction 13 pour dire « n'annonce pas » (alors que cela aurait été le comportement normal) et une fonction 14 pour « annonce quand même » (si le comportement normal aurait été de ne pas relayer la route). Ainsi, 64997:13:0 est « n'annonce pas cette route par défaut » et 64997:14:64999 est « annonce cette route à l'AS 64999 ».

Vous voudriez des exemples réels ? Netnod avait annoncé que ces grandes communautés étaient utilisables sur leur AS 52005 :

  • 52005:0:0 Do not announce to any peer
  • 52005:0:ASx Do not announce to ASx
  • 52005:1:ASx Announce to ASx if 52005:0:0 is set
  • 52005:101:ASx Prepend peer AS 1 time to ASx
  • 52005:102:ASx Prepend peer AS 2 times to ASx
  • 52005:103:ASx Prepend peer AS 2 times to ASx

On trouve également ces communautés au IX-Denver, documentées ici (sous « Route Server B and C Communities ») ou au SIX (dans leur documentation). Il y a enfin cet exemple à ECIX. (Merci à Job Snijders et Pier Carlo Chiodi‏ pour les exemples.)

Voilà, à vous maintenant de développer votre propre politique de communautés d'information, et de lire la documentation de vos voisins BGP pour voir quelles communautés ils utilisent (communautés d'action).


Téléchargez le RFC 8195


L'article seul

RFC 8193: Information Model for Large-Scale Measurement Platforms (LMAPs)

Date de publication du RFC : Août 2017
Auteur(s) du RFC : T. Burbridge, P. Eardley (BT), M. Bagnulo (Universidad Carlos III de Madrid), J. Schoenwaelder (Jacobs University Bremen)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF lmap
Première rédaction de cet article le 22 août 2017


Ce RFC est l'un de ceux du groupe de travail IETF nommé LMAP, pour « Large-Scale Measurement Platforms ». Ce groupe développe des normes pour les systèmes de mesure à grande échelle, ceux où des centaines ou des milliers de sondes quantifient l'Internet. Il décrit le modèle de données utilisé.

Le projet LMAP est décrit dans les RFC 7536 (qui explique à quoi sert LMAP, avec deux exemples concrets) et RFC 7594 (qui normalise le vocabulaire et le cadre général). Pour résumer très vite, LMAP prévoit un Measurement Agent (la sonde) qui parle à un contrôleur, qui lui dit quoi faire, et à un collecteur, qui ramasse les données. Ce nouveau RFC décrit le modèle de données abstrait utilisé dans ces deux communications.

Rappelons que, dans le cadre défini pour LMAP, chaque MA (Measurement Agent) parle à un et un seul contrôleur, qui lui dit ce qu'il doit mesurer. (LMAP sépare le rôle du contrôleur et du collecteur, rôles que beaucoup de systèmes déployés fusionnent.) Il y a donc trois protocoles en jeu, le protocole de contrôle, entre le contrôleur et les MA, le protocole de collecte, entre les collecteurs et les MA, et enfin les protocoles utilisés dans les tests (ICMP ECHO, par exemple, mais aussi HTTP, DNS…) Enfin, il y a aussi la configuration nécessaire dans tous ces équipements. Tous ces points peuvent faire l'objet d'un travail de normalisation, mais ce RFC 8193 présente uniquement un modèle de données adapté au protocole de collecte et au protocole de contrôle.

La notion de modèle de données est expliquée dans le RFC 3444. En gros, il s'agit d'un modèle abstrait (très abstrait) décrivant quel genre de données sont échangées. Il peut se formaliser de manière un peu plus concrète par la suite, par exemple en utilisant le langage YANG (c'est justement ce que fait le RFC d'accompagnement, le RFC 8194). Un tel modèle sert à guider la normalisation, à faciliter la traduction d'un protocole dans un autre s'ils utilisent le même modèle de données, et à définir les données que doit mesurer et conserver le MA.

Le modèle défini ici utilise une notation formelle, utilisant des types de données classiques en programmation (section 3 du RFC) : int (un entier), boolean (une valeur logique), string, mais aussi des types plus riches comme datetime ou uri.

Le modèle lui-même est dans la section 4 du RFC. Je rappelle qu'il suit le cadre du RFC 7594. Il a six parties :

  • Informations de pré-configuration du MA (celle qui est faite en usine),
  • Informations de configuration du MA,
  • Instructions reçues par le MA (« envoie telle requête DNS à tel serveur, de telle heure à telle heure »),
  • Journal du MA, avec des évènements comme le redémarrage de la sonde,
  • État général du MA (« je sais faire des tests IPv6 »),
  • Et bien sûr, le résultat des mesures, ce qui est l'information la plus importante.

Le MA peut également avoir d'autres informations, par exemple des détails sur son type de connectivité.

Pour donner des exemples concrets, je vais souvent citer les sondes RIPE Atlas, même si ce système, conçu avant le RFC, ne suis pas exactement ce modèle. C'est sans doute l'un des plus grands, voire le plus grand réseau de points de mesure dans le monde, avec près de 10 000 sondes connectées. Par exemple, pour la configuration, les informations de pré-configuration d'une sonde Atlas comprennent une adresse MAC et un identificateur, qu'on peut voir sur la sonde : atlas-mac-id.jpg

Les sondes sont également pré-configurées avec le nom du contrôleur (qui sert également de collecteur). Elles acquièrent le reste de leur configuration par DHCP et SLAAC. Regardons par exemple la sonde d'identificateur #21660, installée à Cochabamba, on voit les adresses IP obtenues : sonde-atlas-21660.png

Les sondes Atlas disposent également d'étiquettes (tags) décrivant plus précisement certaines de leurs caractéristiques. Certaines des étiquettes sont attribuées manuellement par leur propriétaire (en bleu sur l'image ci-dessous), d'autres, qui peuvent être déterminées automatiquement, sont mises par le système (en vert sur l'image), et rentrent donc dans le cadre de la partie « état général de la sonde » du modèle : sonde-atlas-21660-tags.png

Les classes utilisées dans le modèle sont, entre autres :

  • Les agendas (schedules) qui indiquent quelle tâche doit être accomplie,
  • Les canaux de communication (channels),
  • les configurations (task configurations),
  • Les évènements (events), qui détaillent le moment où une tâche doit être exécutée.

Première partie, la pré-configuration (section 4.1). On y trouve les informations dont le MA aura besoin pour accomplir sa mission. Au minimum, il y aura un identificateur (par exemple l'adresse MAC), les coordonnées de son contrôleur (par exemple un nom de domaine, mais le RFC ne cite que le cas où ces coordonnées sont un URL, pour les protocoles de contrôle de type REST), peut-être des moyens d'authentification (comme le certificat de l'AC qui signera le certificat du contrôleur). URL et moyens d'authentification, ensemble, forment un canal de communication.

Dans le langage formel de ce modèle, cela fait :


     object {
         [uuid                ma-preconfig-agent-id;]
          ma-task-obj         ma-preconfig-control-tasks<1..*>;
          ma-channel-obj      ma-preconfig-control-channels<1..*>;
          ma-schedule-obj     ma-preconfig-control-schedules<1..*>;
         [uri                 ma-preconfig-device-id;]
          credentials         ma-preconfig-credentials;
     } ma-preconfig-obj;     

    

Cela se lit ainsi : l'information de pré-configuration (type ma-preconfig-obj) comprend divers attributs dont un identificateur (qui est un UUID, on a vu que les Atlas utilisaient un autre type d'identificateurs), des canaux de communication avec le contrôleur, et des lettres de créance à présenter pour s'authentifier. Notez que l'identificateur est optionnel (entre crochets).

Vous avez compris le principe ? On peut passer à la suite plus rapidement (je ne vais pas répéter les déclarations formelles, voyez le RFC). La configuration (section 4.2) stocke les informations volatiles (la pré-configuration étant consacrée aux informations plus stables, typiquement stockées sur une mémoire permanente).

Les instructions (section 4.3) sont les tâches que va accomplir la sonde, ainsi que l'agenda d'exécution, et bien sûr les canaux utilisé pour transmettre les résultats. La journalisation (section 4.4) permet d'enregistrer les problèmes (« mon résolveur DNS ne marche plus ») ou les évènements (« le courant a été coupé »).

Il ne sert évidemment à rien de faire des mesures si on ne transmet pas le résultat. D'où la section 4.6, sur la transmission des résultats de mesure au collecteur. La communication se fait via les canaux décrits en section 4.8.

Une dernière photo, pour clore cet article, une sonde RIPE Atlas en fonctionnement, et une autre sonde, la SamKnows : atlas-et-samknows.jpg

Merci à André Sintzoff pour avoir trouvé de grosses fautes.


Téléchargez le RFC 8193


L'article seul

RFC 8190: Updates to Special-Purpose IP Address Registries

Date de publication du RFC : Juin 2017
Auteur(s) du RFC : R. Bonica (Juniper Networks), M. Cotton (ICANN), B. Haberman (Johns Hopkins University), L. Vegoda (ICANN)
Première rédaction de cet article le 28 juin 2017


Le RFC 6890 avait créé un registre unique des préfixes d'adresses IP « spéciaux ». Ce nouveau RFC met à jour le RFC 6890, précisant et corrigeant quelques points.

Un préfixe « spécial » est juste un préfixe IP dédié à un usage inhabituel, et qui peut nécessiter un traitement particulier. Ainsi, les préfixes 203.0.113.0/24 et 2001:db8::/32 sont dédiés à la documentation, aux cours et exemples et, bien que n'étant pas traités différemment des autres préfixes par les routeurs, ne doivent normalement pas apparaitre dans un vrai réseau. Le RFC 6890 spécifie les deux registres de préfixes spéciaux, un pour IPv4 et un pour IPv6. Mais il y avait une ambiguité dans ce RFC, dans l'usage du terme « global ». Il n'est pas évident à traduire en français. Dans le langage courant, global/globalement, a surtout le sens de « le plus souvent/généralement », alors que, dans le contexte de l'Internet, ce serait plutôt dans le sens « valable pour tout point du globe ». Même en anglais, le terme est polysémique : il peut signifier que l'adresse IP est unique au niveau mondial ou bien il peut signifier que l'adresse est potentiellement joignable mondialement, et qu'un routeur peut donc faire suivre le paquet en dehors de son propre domaine. (La joignabilité effective, elle, dépend évidemment de l'état de BGP.) Le RFC 4291, dans sa section 2.5.4, n'est pas plus clair.

Reprenons l'exemple des préfixes de documentation. Dans les trois préfixes IPv4 de documentation (comme 203.0.113.0/24), les adresses ne sont pas uniques (chacun les alloue comme il veut et, vu le faible nombre d'adresses total, il y aura certainement des collisions) et, de toute façon, n'ont pas de signification en dehors d'un domaine : cela n'a pas de sens de transmettre des paquets ayant de telles adresses à ses partenaires. Pour le préfixe de documentation IPv6, 2001:db8::/32, c'est un peu plus compliqué car les adresses peuvent être quasi-uniques mondialement (si on prend la précaution de les tirer au sort dans le préfixe) mais, de toute façon, n'ont pas vocation à être joignables de partout et on ne transmet donc pas ces paquets à ses voisins.

Bref, notre nouveau RFC choisit d'être plus précis, renommant l'ancien booléen « global » du RFC 6890 en « globally reachable ».

La nouvelle définition (section 2) est donc bien « le paquet ayant cette adresse comme destination peut être transmis par un routeur à un routeur d'un autre domaine (d'un autre opérateur, en pratique) ». La colonne Global du registre est donc remplacée par Globally reachable. Notez qu'il n'y a pas de colonne « Unicité » (une autre définition possible de global).

Cela a nécessité quelques changements supplémentaires dans le registre (toujours section 2), colonne Globally reachable :

  • Le préfixe Teredo 2001::/32 passe de False (les adresses Teredo ne sont pas uniques) à N/A (Not Applicable) car la question de la joignabilité mondiale n'a pas vraiment de sens pour Teredo,
  • Les ULA du RFC 4193 restent à False mais avec une précision en note.

Téléchargez le RFC 8190


L'article seul

RFC 8187: Indicating Character Encoding and Language for HTTP Header Field Parameters

Date de publication du RFC : Septembre 2017
Auteur(s) du RFC : J. Reschke (greenbytes)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF httpbis
Première rédaction de cet article le 14 septembre 2017
Dernière mise à jour le 16 septembre 2017


Les requêtes et réponses du protocole HTTP incluent des en-têtes (comme User-Agent: ou Content-Disposition:) avec des valeurs, qui, il y a longtemps, ne pouvaient se représenter directement qu'avec les caractères du jeu ISO 8859-1, voire seulement avec ASCII (c'était compliqué). Comme MIME, dans le RFC 2231, prévoyait un mécanisme très riche pour encoder les en-têtes du courrier électronique, ce RFC 8187 réutilise ce mécanisme pour HTTP. Pour le corps du message (voir par exemple le RFC 7578), rien ne change.

Cette ancienne restriction à Latin-1 (qui n'est plus d'actualité) vient de la norme HTTP, le RFC 2616, dans sa section 2.2, qui imposait l'usage du RFC 2047 pour les caractères en dehors de ISO 8859-1. Le RFC 7230 a changé cette règle depuis (sa section 3.2) mais pas dans le sens d'une plus grande internationalisation (ISO 8859-1 ne convient qu'aux langues européennes), plutôt en supprimant le privilège d'ISO 8859 et en restreignant à ASCII. Et il ne précise pas vraiment comment faire avec d'autres jeux de caractère comme Unicode. Il ne reste donc que la solution du RFC 2231.

Notre nouveau RFC peut être résumé en disant qu'il spécifie un profil du RFC 2231. Ce profil est décrit en section 3, qui liste les points précisés par rapport au RFC 2231. Tout ce RFC n'est pas utilisé, ainsi le mécanisme en section 3 du RFC 2231, qui permettait des en-têtes de plus grande taille, n'est pas importé (section 3.1 de notre RFC).

En revanche, la section 4 du RFC 2231, qui spécifiait comment indiquer la langue dans laquelle était écrite la valeur d'un en-tête est repris pour les paramètres dans les en-têtes. Ainsi, (section 3.2), voici un en-tête (imaginaire : Information: n'a pas été enregstré), avec un paramètre title traditionnel en pur ASCII :

Information: news; title=Economy

et en voici un avec les possibilités de notre RFC pour permettre les caractères £ et € (« Sterling and euro rates ») :

Information: news; title*=UTF-8''%c2%a3%20and%20%e2%82%ac%20rates

Par rapport au RFC 2231 (qui était silencieux sur ce point), un encodage de caractères est décrété obligatoire (c'est bien sûr UTF-8), et il doit donc être géré par tous les logiciels. La mention de l'encodage utilisé est également désormais obligatoire (section 3.2 de notre RFC). La langue elle-même est indiquée par une étiquette, selon la syntaxe du RFC 5646. Du fait de ces possibilités plus riches que celles prévues autrefois pour HTTP, les paramètres qui s'en servent doivent se distinguer, ce qui est fait avec un astérisque avant le signe égal (voir l'exemple ci-dessus). Notez que l'usage de l'astérisque n'est qu'une convention : si on trouve un paramètre inconnu dont le nom se termine par un astérisque, on ne peut pas forcément en déduire qu'il est internationalisé.

La valeur du paramètre inclut donc le jeu de caractères et l'encodage (obligatoire), la langue (facultative, elle n'est pas indiquée dans l'exemple ci-dessus) et la valeur proprement dite.

Voici un exemple incluant la langue, ici l'allemand (code de, la phrase est « Mit der Dummheit kämpfen Götter selbst vergebens », ou « contre la bêtise, les dieux eux-mêmes luttent en vain », tirée de la pièce « La pucelle d'Orléans ») :

Quote: theater; 
    sentence*=UTF-8'de'Mit%20der%20Dummheit%20k%C3%A4mpfen%20G%C3%B6tter%20selbst%20vergebens.

La section 4 couvre ensuite les détails pratiques pour les normes qui décrivent un en-tête qui veut utiliser cette possibilité. Par exemple, la section 4.2 traite des erreurs qu'on peut rencontrer en décodant et suggère que, si deux paramètres identiques sont présents, celui dans le nouveau format prenne le dessus. Par exemple, si on a :

Information: something; title="EURO exchange rates";
               title*=utf-8''%e2%82%ac%20exchange%20rates

le titre est à la fois en ASCII pur et en UTF-8, et c'est cette dernière version qu'il faut utiliser, même si normalement il n'y a qu'un seul paramètre title.

Ces paramètres étendus sont mis en œuvre dans Firefox et Opera ainsi que, dans une certaine mesure, dans Internet Explorer.

Plusieurs en-têtes HTTP se réfèrent formellement à cette façon d'encoder les caractères non-ASCII :

  • Authentication-Control:, dans le RFC 8053 (« For example, a parameter "username" with the value "Renee of France" SHOULD be sent as username="Renee of France". If the value is "Renée of France", it SHOULD be sent as username*=UTF-8''Ren%C3%89e%20of%20France instead »),
  • Authorization: (pour l'authentification HTTP, RFC 7616, avec également un paramètre username pour l'ASCII et username* pour l'encodage défini dans ce RFC),
  • Content-Disposition:, RFC 6266, qui indique sous quel nom enregistrer un fichier et dont le paramètre filename* permet tous les caractères Unicode,
  • Link:, normalisé dans le RFC 5988, où le paramètre title* permet des caractères non-ASCII (title étant pour l'ASCII pur).

Les changements depuis le RFC 5987, sont expliqués dans l'annexe A. Le plus spectaculaire est le retrait d'ISO 8859-1 (Latin-1) de la liste des encodages qui doivent être gérés obligatoirement par le logiciel. Cela fera plaisir aux utilisateurs d'Internet Explorer 9, qui avait déjà abandonné Latin-1. Autrement, rien de crucial dans ces changements. Le texte d'introduction a été refait pour mieux expliquer la situation très complexe concernant la légalité (ou pas) des caractères non-ASCII dans les valeurs d'en-tête.

Si vous voulez voir un exemple, essayez de télécharger le fichier http://www.bortzmeyer.org/files/foobar.txt. Si votre client HTTP gère l'en-tête Content-Disposition: et le paramètre internationalisé filename*, le fichier devrait être enregistré sous le nom föbàr.txt.La configuration d'Apache pour envoyer le Content-Disposition: est :


<Files "foobar.txt">
    Header set Content-Disposition "attachment; filename=foobar.txt; filename*=utf-8''f%%C3%%B6b%%C3%%A0r.txt"
</Files>

Par exemple, Safari ou Firefox enregistrent bien ce fichier sous son nom international.

Ah, et puisque ce RFC parle d'internationalisation, on notera que c'est le premier RFC (à part quelques essais ratés au début) à ne pas comporter que des caractères ASCII. En effet, suivant les principes du RFC 7997, il comporte cinq caractères Unicode : dans les exemples (« Extended notation, using the Unicode character U+00A3 ("£", POUND SIGN) » et « Extended notation, using the Unicode characters U+00A3 ("£", POUND SIGN) and U+20AC ("€", EURO SIGN) »), dans l'adresse (« Münster, NW 48155 ») et dans les noms des contributeurs (« Thanks to Martin Dürst and Frank Ellermann »).


Téléchargez le RFC 8187


L'article seul

RFC 8179: Intellectual Property Rights in IETF Technology

Date de publication du RFC : Mai 2017
Auteur(s) du RFC : Scott Bradner (Harvard University), Jorge Contreras (University of Utah)
Première rédaction de cet article le 1 juin 2017


L'appropriation intellectuelle est partout et donc logiquement aussi dans les organismes de normalisation comme l'IETF. C'est l'objet de ce RFC, qui remplace les RFC 3979 et RFC 4879 sur les questions de brevets (nommées, à tort, questions de « propriété intellectuelle », alors que les brevets ne sont pas la même chose que les copyrights, traités dans le RFC 5378).

Donc, sur quels principes repose la politique de l'IETF au sujet des brevets ? L'idée de base est de s'assurer que l'IETF disposera d'information sur les brevets pouvant s'appliquer à une norme donnée, de façon à pouvoir prendre une décision en toute connaissance de cause. Il n'y a par contre pas de mécanisme automatique de décision, par exemple « Ne jamais normaliser des technologies brevetées ». En effet, compte-tenu du fait que l'écrasante majorité des brevets logiciels est futile, enregistrée uniquement parce que les organismes de brevetage ont un intérêt financier à accepter tout et n'importe quoi, une telle politique mènerait à ne rien pouvoir normaliser.

En pratique, tout ce RFC 8179 pourrait donc se résumer à « Tout participant à l'IETF qui connait ou devrait connaitre un brevet pouvant s'appliquer à une technique en cours de discussion doit en informer l'IETF ». C'est tout. Mais il y a quelques détails pratiques.

D'abord, il faut rappeler que ce sont officiellement des individus qui participent à l'IETF, pas des sociétés. Donc l'obligation s'applique à ces individus et ils ne peuvent pas y échapper en prétendant que leur compagnie leur interdit de réveler un brevet sous-marin (brevet sur lequel on fait peu de publicité, pour le ressortir une fois que la technique brevetée a été largement adoptée). Ensuite, le RFC définit ce que signifie contribuer à l'IETF (section 1). Par exemple, écrire sur une liste de diffusion d'un groupe de travail est une contribution. Cette règle est régulièrement rappelée par le fameux Note Well.

La section 1 définit formellement bien d'autres choses. Un concept essentiel mais souvent oublié est le Reasonably and personally known. Il désigne une information que le participant connait ou devrait connaitre, vu sa position dans l'entreprise qui l'emploie. L'idée est que le participant IETF n'est pas obligé de chercher activement dans le portefeuille de brevets de son entreprise, que l'obligation ne s'applique qu'à ce qu'il connait forcément, depuis son poste. Le but de l'ajout reasonably est d'éviter qu'une entreprise ne dissimule un brevet à ses propres employés.

Les principes sont donc :

  • L'IETF ne va pas chercher à déterminer si un brevet est futile ou pas (cela peut être un très gros travail, la plupart des brevets étant rédigés en termes délibérement incompréhensibles),
  • L'IETF peut normaliser ou pas une technique brevetée, il n'y a pas de refus systématique,
  • Pour pouvoir néanmoins savoir où on va, l'IETF a besoin d'information et c'est de là que découle l'exigence de divulgation des brevets, la principale obligation concrète de ce RFC 8179.

La section 3 rentre dans le concret, même si elle commence par un bel exercice de langue de bois (« The intent is to benefit the Internet community and the public at large, while respecting the legitimate rights of others. »). C'est elle qui impose que le contributeur à l'IETF ait bien divulgué tous les brevets qu'il connaissait « raisonnablement ». Outre le brevet lui-même, il peut y avoir une licence associée (un droit d'utiliser la technologie brevetée, sous certaines conditions). Si le détenteur du brevet n'indique pas de licence, l'IETF peut poliment lui demander. La licence (RAND, FRAND, RANDZ - c'est-à-dire gratuite …) sera évidemment un des éléments sur lesquels les participants à l'IETF fonderont leur position (cf. RFC 6410).

La section 4 indique ce que l'IETF va en faire, de ces divulgations (nommées « IPR [Intellectual Property Rights] disclosures ») : indication du fait qu'il existe des brevets pouvant s'y appliquer et publication de ces divulgations en http://www.ietf.org/ipr/. Par exemple, Verisign a un brevet (brevet états-unien 8,880,686, et la promesse de licence de Verisign) qu'ils prétendent valable, et dont ils affirment qu'il couvre la technique décrite dans le RFC 7816. (Sur la page officielle du RCF, c'est le lien « Find IPR Disclosures from the IETF ».) L'IETF (ou l'IAB, ou l'ISOC ou autre) n'ajoutera aucune appréciation sur la validité du brevet, ou sur les conditions de licence. Une telle appréciation nécessiterait en effet un long et coûteux travail juridique.

La note d'information n'est plus à inclure dans chaque RFC comme c'était autrefois le cas. Elle est désormais dans le IETF Trust Legal Provisions (version de 2015 : « The IETF Trust takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in any IETF Document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. »). Comme exemple d'un brevet abusif, on peut citer la divulgation #1154, qui se réclame d'un brevet sur les courbes elliptiques qui s'appliquerait à tous les RFC parlant d'un protocole qui peut utiliser ces courbes, comme le RFC 5246.

Les divulgations ne sont pas incluses dans les RFC eux-mêmes (section 10) car elles peuvent évoluer dans le temps alors que le RFC est stable. Il faut donc aller voir ces « IPR disclosures » en ligne sur http://www.ietf.org/ipr/.

Les divulgations sont-elles spécifiées plus en détail ? Oui, en section 5. La 5.1 précise qui doit faire la divulgation (le participant, en tant que personne physique), la section 5.2 donne les délais (« aussi vite que possible »), la section 5.4.3 rappelle que la divulgation doit être précise et qu'un contributeur ne peut pas se contenter de vagues généralités (« blanket disclosure »). Le tout est aussi mis en ligne, en http://www.ietf.org/ipr-instructions.

Et si un tricheur, comme la société RIM, ne respecte pas cette obligation de divulgation ? La section 6 ne prévoit aucune dérogation : si, par exemple, une société empêche ses employés de divulguer les brevets, ces employés ne doivent pas participer à l'IETF (« tu suis les règles, ou bien tu ne joues pas »). Tout participant à l'IETF est censé connaitre cette règle (section 3.3). Le RFC 6701 liste les sanctions possibles contre les tricheurs et le RFC 6702 expose comment encourager le respect des règles.

Bien, donc, arrivé là, l'IETF a ses informations et peut prendre ses décisions. Sur la base de quelles règles ? La section 7 rappelle le vieux principe qu'une technique sans brevets est meilleure ou, sinon, à la rigueur, une technique où le titulaire des brevets a promis des licences gratuites. Mais ce n'est pas une obligation, l'IETF peut choisir une technologie brevetée, même sans promesses sur la licence, si cette technologie en vaut la peine.

La seule exception concerne les techniques de sécurité obligatoires : comme tout en dépend, elles ne doivent être normalisées que s'il n'existe pas de brevet ou bien si la licence est gratuite.

Les règles de bon sens s'appliquent également : s'il s'agit de faire une nouvelle version normalisée d'un protocole très répandu, on évitera de choisir une technologie trop encombrée de brevets, s'il s'agit d'un tout nouveau protocole expérimental, on pourra être moins regardant.

Les changements depuis les RFC précédents, les RFC 3979 et RFC 4879, sont décrits dans la section 13. Pas de révolution, les principes restent les mêmes. Parmi les changements :

  • Texte modifié pour permettre l'utilisation de ces règles en dehors de la voie IETF classique (par exemple par l'IRTF).
  • La définition d'une « contribution IETF » a été élargie pour inclure, par exemple, les interventions dans les salles XMPP de l'IETF.
  • Meilleure séparation des questions de brevets (traitées dans notre RFC) avec celles de droit d'auteur (traitées dans le RFC 5378). Le terme de « propriété intellectuelle » a plusieurs défauts, dont celui de mêler des choses très différentes (brevets, marques, droit d'auteur…)
  • Il n'y a plus de boilerplate (qui était en section 5 du RFC 3979) à inclure dans les documents, il est désormais en ligne.

Téléchargez le RFC 8179


L'article seul

RFC 8174: RFC 2119 Key Words: Clarifying the Use of Capitalization

Date de publication du RFC : Mai 2017
Auteur(s) du RFC : B. Leiba (Huawei)
Première rédaction de cet article le 19 mai 2017
Dernière mise à jour le 20 mai 2017


Un très court RFC discutant un problème de procédure : dans le RFC 2119, qui décrit les termes précis à utiliser dans les normes, un doute subsistait sur la casse de ces termes.

Ce RFC 2119 est celui qui formalise les fameux MUST, SHOULD et MAY, les termes qu'il faut utiliser dans les normes pour être sûr d'indiquer le niveau exact d'exigence. Suivant l'exemple du RFC 2119, ils sont toujours écrits en CAPITALES pour les distinguer du sens courant en anglais, mais cet usage n'était pas explicite dans le RFC 2119 (qui a juste un vague « These words are often capitalized »). Un oubli que corrige notre RFC 8174. Désormais, MUST n'a le sens du RFC 2119 que s'il est en capitales.

Par exemple, dans le RFC 8120, dans le texte « The client SHOULD try again to construct a req-KEX-C1 message in this case », SHOULD est en capitales et a donc bien le sens précis du RFC 2119 (le client est censé ré-essayer de faire son message, sauf s'il a une très bonne raison), alors que dans le texte « This case should not happen between a correctly implemented server and client without any active attacks », should est en minuscules et a donc bien son sens plus informel qui est usuel en anglais.

Le texte qu'il est recommandé d'inclure dans les RFC qui font référence au RFC 2119 apporte désormais cette précision : « The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119],[RFC 8174] when, and only when, they appear in all capitals, as shown here. » Plusieurs auteurs de RFC, conscients de l'ambiguité, avaient d'ailleurs déjà fait une telle modification dans leur référence au RFC 2119. Ainsi, le RFC 5724 dit « The _capitalized_ [souligné par moi] key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. »

Notez que le fait de faire une différence sémantique entre le mot en minuscules et le mot en capitales est assez typique des utilisateurs de l'alphabet latin, et déroute toujours beaucoup les utilisateurs d'écritures qui n'ont pas cette distinction, comme les Coréens.


Téléchargez le RFC 8174


L'article seul

RFC 8170: Planning for Protocol Adoption and Subsequent Transitions

Date de publication du RFC : Mai 2017
Auteur(s) du RFC : D. Thaler (Microsoft)
Pour information
Première rédaction de cet article le 18 mai 2017


L'Internet existe depuis de nombreuses années (le nombre exact dépend de la façon dont on compte…) et, pendant tout ce temps, les protocoles utilisés ne sont pas restés identiques à eux-mêmes. Ils ont évolué, voire ont été remplacés. Cela soulève un problème : la transition entre l'ancien et le nouveau (le cas le plus fameux étant évidemment le passage d'IPv4 à IPv6…) Beaucoup de ces transitions se sont mal passées, parfois en partie car l'ancien protocole ou l'ancienne version n'avait pas prévu son futur remplacement. Contrairement à ce qu'espèrent souvent les techniciens, il ne suffit pas d'incrémenter le numéro de version pour que tous les acteurs adoptent la nouvelle version. Ce nouveau RFC de l'IAB raconte les leçons tirées, et regarde comment on pourrait améliorer les futures transitions.

Ce RFC se focalise sur les transitions techniques. Ce ne sont évidemment pas les seules (il y a par exemple des transitions organisationnelles) mais ce sont celles qui comptent pour l'IAB et l'IETF. Une transition peut être aussi bien le déploiement d'un tout nouveau protocole, que le passage d'un protocole d'une version à une autre. Le thème de la transition d'un protocole à l'autre est fréquent, et de nombreux RFC ont déjà été consacrés à une transition. C'est le cas de :

  • Le RFC 3424, qui parlait des techniques de contournement des NAT, en insistant sur le fait qu'elles devaient avoir un caractère provisoire, et ne pas ossifier encore plus l'Internet,
  • Le RFC 4690 qui parlait de la transition d'une version d'Unicode à l'autre, dans le contexte des IDN,
  • La déclaration de l'IAB sur NAT-PT, qui critiquait une méthode de transition vers IPv6.

Outre les transitions à proprement parler, l'IAB s'est déjà penché sur les principes qui faisaient qu'un protocole pouvait marcher ou pas. C'est notamment le cas de l'excellent RFC 5218 qui étudie les facteurs qui font d'un protocole un échec, un succès, ou un succès fou. Parmi les leçons tirées par ce RFC 5218, les concepteurs d'un protocole devraient s'assurer que :

  • Les bénéfices sont pour celui qui assume les coûts. Dans un réseau, coûts et bénéfices ne sont pas forcément alignés. Par exemple, le déploiement de BCP 38 bénéficie aux concurrents de celui qui paie, ce qui explique le manque d'enthousiasme des opérateurs. Notez que coûts et bénéfices ne sont pas déterminés par les lois physiques, ils peuvent être changés par la loi (amendes pour ceux qui ne déploient pas BCP 38, ou à l'inverse code source gratuitement disponible et payé par l'argent public, comme cela avait été le cas pour encourager le déploiement de TCP/IP).
  • Le protocole est déployable de manière incrémentale (dans un réseau comme l'Internet, qui représente des investissements énormes, toute solution qui nécessite de jeter tout l'existant d'un coup est condamnée d'avance).
  • Le coût total est raisonnable. Il ne faut pas seulement regarder le prix des machines et d'éventuelles licences logicielles. Il faut aussi tenir compte de la formation, des changements de pratiques, des conséquences juridiques…

Le RFC 7305 discutait également des aspects économiques de la transition et notait l'importance de donner une carotte aux premiers à adopter le nouveau protocole, ceux qui font un pari risqué. C'est pour cela qu'il est parfaitement légitime que les premiers à avoir cru dans Bitcoin aient reçu une quantité importante de bitcoins à un prix très faible. Cette décision était une des meilleures prises par Satoshi Nakamoto. Ce RFC note aussi l'importance d'un partenariat avec des organisations qui peuvent aider ou contrarier la transition (comme les RIR ou l'ICANN).

La section 2 de notre RFC rappelle que, de toute façon, le terme « transition » risque d'être mal interprété. Il n'est plus possible depuis longtemps de faire un flag day dans l'Internet, un jour J où on change toutes les machines d'un coup de manière coordonnée. Les transitions sont donc forcément longues, avec une période de co-existence entre l'ancien et le nouveau.

Si l'ancien et le nouveau protocole ne peuvent pas interopérer directement (cas d'IPv4 et d'IPv6), il faudra parfois envisager un mécanisme de traduction (qui ne se situera pas forcément dans la même couche). Un tel traducteur, s'il est situé sur le chemin entre les deux machines, pose souvent d'ennuyeux problèmes de sécurité car il risque fort de casser le modèle de bout en bout.

La section 5 de notre RFC est consacrée aux plans de transition. Ah, les plans… Ils sont évidemment indispensables (on ne va pas se lancer dans une grande transition sans avoir planifié un minimum) mais ils sont aussi très fragiles (comme disent les militaires, « aucun plan ne survit à la première rencontre avec l'ennemi »), et ils terminent souvent au musée des mauvaises idées. Disons qu'il faut avoir un plan, mais ne pas en être esclave.

Quelles sont les qualités d'un bon plan de transition, en s'appuyant sur les expériences ratées et réussies ? D'abord, il faut bien connaitre l'existant. Par exemple, si l'ancien protocole a une fonction optionnelle qui n'a pas d'équivalent, ou un équivalent très différent dans le nouveau protocole, il est bon de savoir si cette fonction est utilisée en pratique (elle peut même ne pas être implémentée du tout, ce qui facilite les choses). De même, il est important de savoir si les logiciels existants mettent réellement en œuvre l'ancien protocole tel qu'il est spécifié, ou bien si, en pratique, ils en dévient, et ont des comportements qui vont poser des problèmes pendant la transition. (Un cas typique est celui de SSL où la plupart des programmes n'avaient pas mis en œuvre correctement le mécanisme de négociation, et plantaient donc lorsqu'une nouvelle version arrivait.)

Un autre élément important d'un plan de transition est d'avoir les idées claires sur les incitations à migrer. Les acteurs de l'Internet utilisent l'ancien protocole. Ça marche pour eux. Pourquoi feraient-ils l'effort de migrer vers un nouveau protocole, ce qui leur coûtera du temps et de l'argent ? Il faut donc des incitations (ou du marketing, qui arrive souvent à faire acheter un gadget inutile). Il n'y a pas que les coûts financiers directs, il faut aussi regarder d'autres problèmes à surmonter (par exemple l'hostilité de certains acteurs, ainsi le chiffrement a du mal à se répandre car les acteurs de l'Internet qui font de la surveillance ont intérêt à continuer à violer la vie privée).

Il y a ensuite le plan proprement dit : une liste des étapes, avec un vague calendrier. Le calendrier est certainement la partie la plus fragile du plan ; l'Internet n'ayant pas de chef, une transition va dépendre des efforts d'un grand nombre d'acteurs non coordonnés, et prédire leurs délais de réaction est à peu près impossible. (Voir le RFC 5211 pour un exemple.)

Un bon plan doit aussi comprendre un moyen de déterminer le succès (ou l'échec). Là aussi, ce n'est pas évident du tout. Certains protocoles sont surtout utilisés dans des réseaux locaux, donc difficiles à mesurer de l'extérieur (comment savoir combien de FAI proposent un résolveur DNS sécurisé par le RFC 7858 ?) Parfois, les critères quantitatifs ne sont pas évidents à établir. Prenons l'exemple d'IPv6 (lisez à ce sujet le rapport de l'ARCEP sur la transition IPv6, qui traite la question en détail). Comment mesure-t-on le succès d'IPv6 ? Le pourcentage de sites Web du Top N d'Alexa qui a une adresse IPv6 ? Le pourcentage d'utilisateurs finaux qui a IPv6 ? Le pourcentage d'octets IPv6 vs. IPv4 ? (Et où ? Chez Google ? Sur un point d'échange comme le France-IX ? Sur le réseau d'un transitaire ? Les valeurs seront très différentes.)

On l'a dit, les plans, même les meilleurs, survivent rarement à la rencontre avec le monde réel. Il faut donc un (ou plusieurs) « plan B », une solution de secours. Souvent, de facto, la solution de secours est la coexistence permanente de l'ancien et du nouveau protocole…

Et puis bien des acteurs de l'Internet ne suivent pas attentivement ce que fait l'IETF, voire ignorent complètement son existence, ce qui ajoute un problème supplémentaire : il faut communiquer le plan, et s'assurer qu'il atteint bien tous les acteurs pertinents (tâche souvent impossible). C'est le but d'opérations de communication comme le World IPv6 Launch Day.

Notre RFC rassemble ensuite (annexe A) quatre études de cas, illustrant des problèmes de transition différents. D'abord, le cas d'ECN. Ce mécanisme, normalisé dans le RFC 3168, permettait aux routeurs de signaler aux machines situées en aval de lui que la congestion menaçait. L'idée est que la machine aval, recevant ces notifications ECN, allait dire à la machine émettrice, située en amont du routeur, de ralentir, avant qu'une vraie congestion n'oblige à jeter des paquets. Les débuts d'ECN, vers 2000-2005, ont été catastrophiques. Les routeurs, voyant apparaitre des options qu'ils ne connaissaient pas, ont souvent planté. C'est un cas typique où une possibilité existait (les options d'IPv4 étaient normalisées depuis le début) mais n'était pas correctement implémentée en pratique. Toute transition qui se mettait à utiliser cette possibilité allait donc se passer mal. Pour protéger les routeurs, des pare-feux se sont mis à retirer les options ECN, ou bien à jeter les paquets ayant ces options, rendant ainsi très difficile tout déploiement ultérieur, même après correction de ces sérieuses failles dans les routeurs.

À la fin des années 2000, Linux et Windows ont commencé à accepter l'ECN par défaut (sans toutefois le réclamer), et la présence d'ECN, mesurée sur le Top Million d'Alexa, a commencé à grimper. De quasiment zéro en 2008, à 30 % en 2012 puis 65 % en 2014. Bref, ECN semble, après un très long purgatoire, sur la bonne voie (article « Enabling Internet-Wide Deployment of Explicit Congestion Notification »).

(Un autre cas, non cité dans le RFC, où le déploiement d'une possibilité ancienne mais jamais testé, a entrainé des conséquences fâcheuses, a été celui de BGP, avec la crise de l'attribut 99.)

L'exemple suivant du RFC est celui d'IDN. L'internationalisation est forcément un sujet chaud, vu les sensibilités existantes. Les IDN résolvent enfin un problème très ancien, l'impossibilité d'avoir des noms de domaine dans toutes les écritures du monde. (Voir la section 3 du RFC 6055, pour la longue et compliquée histoire des IDN.) Une fois que la norme IDN était disponible, il restait à effectuer la transition. Elle n'est pas encore terminée aujourd'hui. En effet, de nombreuses applications manipulent les noms de domaine et doivent potentiellement être mises à jour. Bien sûr, elles peuvent toujours utiliser la forme Punycode, celle-ci est justement conçue pour ne pas perturber les applications traditionnelles, mais ce n'est qu'un pis-aller (ஒலிம்பிக்விளையாட்டுகள்.சிங்கப்பூர் est quand même supérieur à xn--8kcga3ba7d1akxnes3jhcc3bziwddhe.xn--clchc0ea0b2g2a9gcd).

Pire, IDN a connu une transition dans la transition, lors du passage de la norme IDN 2003 (RFC 3490) vers IDN 2008 (RFC 5890). IDN 2008 était conçu pour découpler IDN d'une version particulière d'Unicode mais l'un des prix à payer était le cassage de la compatibilité : certains caractères comme le ß étaient traités différemment entre IDN 2003 et IDN 2008.

Le cas d'IDN est aussi l'occasion, pour le RFC, de rappeler que tout le monde n'a pas forcément les mêmes intérêts dans la transition. IDN implique, outre l'IETF, les auteurs de logiciels (par exemple ceux des navigateurs), les registres de noms de domaine, les domaineurs, et bien sûr les utilisateurs. Tous ne sont pas forcément d'accord et le blocage d'une seule catégorie peut sérieusement retarder une transition (diplomatiquement, le RFC ne rappele pas que l'ICANN a longtemps retardé l'introduction d'IDN dans la racine du DNS, pour des pseudo-raisons de sécurité, et que leur introduction n'a pu se faire qu'en la contournant.)

Lorsqu'on parle transition douloureuse, on pense évidemment tout de suite à IPv6. Ce successeur d'IPv4 a été normalisé en 1995 (par le RFC 1833), il y a vingt-deux ans ! Et pourtant, il n'est toujours pas massivement déployé. (Il existe de nombreuses métriques mais toutes donnent le même résultat : IPv6 reste minoritaire, bien que ces dernières années aient vu des progrès certains. Notez que les réseaux visibles publiquement ne sont qu'une partie de l'Internet : plusieurs réseaux internes, par exemple de gestion d'un opérateur, sont déjà purement IPv6.) Il y avait pourtant un plan de transition détaillé (RFC 1933), fondé sur une coexistence temporaire où toutes les machines auraient IPv4 et IPv6, avant qu'on ne démantèle progressivement IPv4. Mais il a clairement échoué, et ce problème est maintenant un sujet de plaisanterie (« l'année prochaine sera celle du déploiement massif d'IPv6 », répété chaque année).

Là encore, un des problèmes était que tout le monde n'a pas les mêmes intérêts. Si les fabricants de routeurs et les développeurs d'applications bénéficient d'IPv6, c'est beaucoup moins évident pour les gérants de sites Web, ce qui explique que plusieurs sites à forte visibilité, comme Twitter, ou bien gérés par des gens pourtant assez branchés sur la technique, comme GitHub, n'aient toujours pas IPv6 (c'est également le cas de la totalité des sites Web du gouvernement français, qui pourtant promeut officiellement l'usage d'IPv6).

L'effet réseau a également joué à fond contre IPv6 : les pionniers n'ont aucune récompense, puisqu'ils seront tout seuls alors que, par définition, le réseau se fait à plusieurs. Bien sûr, IPv6 marche mieux que l'incroyable et branlante pile de techniques nécessaire pour continuer à utiliser IPv4 malgré la pénurie (STUN, TURN, port forwarding, ICE, etc). Mais tout le monde ne ressent pas ce problème de la même façon : le FAI, par exemple, ne supporte pas les coûts liés à la non-transition, alors qu'il paierait ceux de la transition. Ce problème de (non-)correspondance entre les coûts et les bénéfices est celui qui ralentit le plus les nécessaires transitions. Et puis, pour les usages les plus simples, les plus Minitel 2.0, IPv4 et ses prothèses marchent « suffisamment ».

La lenteur de la transition vers IPv6 illustre aussi la difficulté de nombreux acteurs à planifier à l'avance. C'est seulement lorsque l'IANA, puis les RIR sont l'un après l'autre tombés à court d'adresses IPv4 que certains acteurs ont commencé à agir, alors que le problème était prévu depuis longtemps.

Il n'y a évidemment pas une cause unique à la lenteur anormale de la transition vers IPv6. Le RFC cite également le problème de la formation : aujourd'hui encore, dans un pays comme la France, une formation de technicien ou d'ingénieur réseaux peut encore faire l'impasse sur IPv6.

Le bilan du déploiement d'IPv6 est donc peu satisfaisant. Si certains réseaux (réseaux internes d'entreprises, réseaux de gestion) sont aujourd'hui entièrement IPv6, le déploiement reste loin derrière les espérances. Ce mauvais résultat nécessite de penser, pour les futurs déploiements, à aligner les coûts et les bénéfices, et à essayer de fournir des bénéfices incrémentaux (récompenses pour les premiers adoptants, comme l'a fait avec succès Bitcoin).

Dernier cas de transition étudié par notre RFC, HTTP/2 (RFC 7540). Nouvelle version du super-populaire protocole HTTP, elle vise à améliorer les performances, en multiplexant davantage, et en comprimant les en-têtes (RFC 7541). HTTP/2 a vécu la discussion classique lors de la conception d'une nouvelle version, est-ce qu'on résout uniquement les problèmes les plus sérieux de l'ancienne version ou bien est-ce qu'on en profite pour régler tous les problèmes qu'on avait laissés ? HTTP/2 est très différent de HTTP/1. Ses règles plus strictes sur l'utilisation de TLS (algorithmes abandonnés, refus de la renégociation, par exemple) ont d'ailleurs entrainé quelques problèmes de déploiement.

Il y a même eu la tentation de supprimer certaines fonctions de HTTP/1 considérées comme inutiles ou néfastes (les réponses de la série 1xx, et les communications en clair, entre autres). Après un débat très chaud et très houleux, HTTP/2 n'impose finalement pas HTTPS : les communications peuvent se faire en clair même si, en pratique, on voit très peu de HTTP/2 sans TLS.

Et comment négocier l'ancien protocole HTTP/1 ou le nouveau HTTP/2 ? Ce problème du client (le même qu'avec les versions d'IP : est-ce que je dois tenter IPv6 ou bien est-ce que j'essaie IPv4 d'abord ?) peut être résolu par le mécanisme Upgrade de HTTP (celui utilisé par le RFC 6455), mais il nécessite un aller-retour supplémentaire avec le serveur. Pour éviter cela, comme presque toutes les connexions HTTP/2 utilisent TLS, le mécanisme privilégié est l'ALPN du RFC 7301.

Ce mécanisme marche tellement bien que, malgré le conseil du RFC 5218, HTTP/2 prévoit peu de capacités d'extensions du protocole, considérant qu'il vaudra mieux, si on veut l'étendre un jour, passer à un nouvelle version, négociée grâce à ALPN (cf. RFC 6709.)

En conclusion, on peut dire que la conception d'un nouveau protocole (ou d'une nouvelle version d'un protocole existant) pour que la transition se passe vite et bien, reste un art plutôt qu'une science. Mais on a désormais davantage d'expérience, espérons qu'elle sera utilisée dans le futur.


Téléchargez le RFC 8170


L'article seul

RFC 8165: Design considerations for Metadata Insertion

Date de publication du RFC : Mai 2017
Auteur(s) du RFC : T. Hardie
Pour information
Première rédaction de cet article le 14 mai 2017


Ce court RFC déconseille l'insertion de métadonnées dans les paquets IP, si cette insertion est faite en route, par des intermédiaires. Pourquoi ? (Essentiellement pour des raisons de vie privée.)

Le problème de la surveillance de masse que pratiquent la plupart des États (en tout cas ceux qui en ont les moyens financiers) est maintenant bien documenté (par exemple dans les RFC 7258 et RFC 7624). Une solution fréquente pour limiter cette surveillance, la rendre plus coûteuse et moins efficace est de chiffrer ses communications. Dans l'éternelle lutte de l'épée et de la cuirasse, les surveillants réagissent au chiffrement en utilisant davantage les métadonnées, en général non protégées par le chiffrement. Qui met des métadonnées dans les paquets, affaiblissant ainsi l'effet du chiffrement ?

Certaines métadonnées sont absolument indispensables au fonctionnement de l'Internet. Par exemple, l'adresse IP de destination dans un paquet doit être en clair car tous les routeurs situés sur le trajet doivent la voir, pour prendre leurs décisions. Certaines métadonnées sont inutiles au fonctionement de l'Internet, mais difficiles à dissimuler, la taille des paquets, par exemple. (C'est également un exemple d'une métadonnée implicite : contrairement à l'adresse IP, elle n'apparait pas explicitement dans le paquet.) Normalement, pour gêner la surveillance, il faut envoyer le moins de métadonnées possible.

L'Internet est souvent décrit comme reposant sur une liaison de bout en bout, où seules les deux machines situées aux extrémités de la communication ont accès à tout le contenu de la communication. Mais, en pratique, il existe souvent des équipements intermédiaires qui ont accès à des informations poour faire leur travail. Si ces middleboxes ont la mauvaise idée de mettre ces informations dans les métadonnées d'un paquet, elles affaiblissent la confidentialité des échanges. Imaginons par exemple (ce n'est pas forcément fait aujourd'hui : le RFC met en garde contre une mauvaise idée, pas toujours contre des pratiques existantes, voir à ce sujet l'examen par la direction Sécurité), imaginons par exemple un VPN qui déciderait d'indiquer l'adresse IP originale dans la communication… Notre RFC mentionne deux exemples qui sont décrits dans des RFC : le RFC 7239 qui décrit l'en-tête HTTP Forwarded: qu'un relais HTTP peut mettre pour indiquer l'adresse IP d'origine du client, et bien sûr le RFC 7871, où un résolveur DNS transmet aux serveurs faisant autorité l'adresse IP du client original.

La section 4 du RFC est la recommandation concrète : les métadonnées ne doivent pas être mises par les intermédiaires. Si ces informations peuvent être utiles aux destinataires, c'est uniquement au client d'origine de les mettre. Autrement, on trahit l'intimité du client.

Le RFC 7871, par exemple, aurait dû spécifier un mécanisme où l'adresse IP est mise par le client DNS de départ, celui qui tourne sur la machine de l'utilisateur. Cela permettrait un meilleur contrôle de sa vie privée par l'utilisateur.

Et si cette machine ne connait pas sa propre adresse IP publique, par exemple parce qu'elle est coincée derrière un NAT? Dans ce cas, notre RFC 8165 dit qu'il faut utiliser une technique comme STUN (RFC 5389) pour l'apprendre.

Bon, la section 4, c'était très joli, c'était les bons conseils. Mais la cruelle réalité se met parfois sur leur chemin. La section 5 de notre RFC est le « reality check », les problèmes concrets qui peuvent empêcher de réaliser les beaux objectifs précédents.

D'abord, il y a le désir d'aller vite. Prenons l'exemple du relais HTTP qui ajoute un en-tête Forwarded: (RFC 7239), ce qui permet des choses positives (adapter le contenu de la page Web servie au client) et négatives (fliquer les clients). Certes, le client HTTP d'origine aurait pu le faire lui-même, mais, s'il est derrière un routeur NAT, il faut utiliser STUN. Même si tous les clients HTTP décidaient de la faire, cela ne serait pas instantané, et la longue traine du déploiement des navigateurs Web ferait qu'un certain nombre de clients n'aurait pas cette fonction. Alors que les relais sont moins nombreux et plus susceptibles d'être rapidement mis à jour.

En parlant d'adaptation du contenu au client, il faut noter que c'est une des principales motivations à l'ajout de tas de métadonnées. Or, comme dans l'exemple ci-dessus, si on demande au client de mettre les métadonnées lui-même, beaucoup ne le feront pas. De mon point de vue, ils ont bien raison, et le RFC note qu'une des motivations pour la consigne « ne pas ajouter de métadonnées en route » est justement de rendre le contrôle à l'utilisateur final : il pourra choisir entre envoyer des métadonnées lui permettant d'avoir un contenu bien adapté, et ne pas en envoyer pour préserver sa vie privée. Mais ce choix peut rentrer en conflit avec ds gens puissants, qui exigent, par exemple dans la loi, que le réseau trahisse ses utilisateurs, en ajoutant des informations qu'eux-mêmes ne voulaient pas mettre.

Enfin, il y a l'éternel problème de la latence. L'utilisation de STUN va certainement ralentir le client.

Un dernier point (section 7 du RFC) : si on passe par Internet pour contacter des services d'urgence (pompiers, par exemple, ou autre PSAP), ils ont évidemment besoin du maximum d'informations, et, dans ce cas, c'est peut-être une exception légitime à la règle de ce RFC.


Téléchargez le RFC 8165


L'article seul

RFC 8164: Opportunistic Security for HTTP/2

Date de publication du RFC : Mai 2017
Auteur(s) du RFC : M. Nottingham, M. Thomson (Mozilla)
Expérimental
Réalisé dans le cadre du groupe de travail IETF httpbis
Première rédaction de cet article le 16 mai 2017


Pendant la mise au point de la version 2 du protocole HTTP (finalement normalisée dans le RFC 7540), un débat très vigoureux avait porté sur la possibilité de chiffrer les échanges avec TLS même si le plan de l'URL demandé était http: (et pas https:). Certains demandaient le chiffrement systématique (que l'URL commence par http: ou https:), d'autres voulaient garder la même sémantique que HTTP version 1 (TLS pour https:, en clair pour http:). Cette dernière décision l'avait emporté à l'époque, en gardant la possibilité de permettre une extension à HTTP/2. Ce nouveau RFC décrit justement une telle extension (expérimentale, pour l'instant) : en HTTP/2, on peut désormais utiliser TLS (et donc HTTPS) même pour un URL de plan http:.

Le problème à résoudre est celui de la surveillance de masse, à laquelle procèdent un certain nombre d'acteurs (les États, bien sûr, mais pas uniquement, certains FAI, certains réseaux locaux, surveillent le trafic de leurs utilisateurs). Cette surveillance de masse est considérée, à juste titre, par l'IETF comme un problème de sécurité, et contre lequel il faut donc trouver des solutions ou au moins des mitigations (RFC 7258). Chiffrer massivement le trafic Web est évidemment indispensable pour diminuer l'efficacité de la surveillance.

Mais le modèle de HTTP version 1 rend cela difficile. En HTTP/1, on accède à un URL de plan http: avec du trafic en clair, passer à TLS nécessite de changer les URL, donc les pages Web qui les contiennent, les signets des utilisateurs, etc. Des logiciels comme HTTPS Everywhere aident à cela mais ne sont pas une solution parfaite (rappelez-vous par exemple qu'une bonne partie du trafic HTTP n'est pas due aux navigateurs Web).

Il serait tentant de résoudre le problème en disant « le client HTTP qui tente d'accéder à un URL de plan http: n'a qu'à essayer en même temps HTTPS. Si ça marche, tant mieux. Si ça rate, au moins on aura essayé. » C'est ce qu'on nomme parfois le « chiffrement opportuniste » (RFC 7435). Mais cela pose trois problèmes :

  • Si on tente HTTPS d'abord, sur le port 443, et qu'un pare-feu sur le trajet absorbe ces paquets, on devra attendre l'expiration du délai de garde avant d'essayer avec succès sur le port 80. Ce problème est réel, mais soluble par l'algorithme des globes oculaires heureux, décrit dans le RFC 6555.
  • Que faire si ça réussit en HTTPS mais que le certificat du serveur ne peut pas être validé ? La difficulté et/ou le coût d'un certificat sont après tout les principales raisons pour lesquelles HTTPS n'est pas davantage déployé. (Je ne publie pas des URL https: pour mon blog car beaucoup de gens n'ont pas mon AC dans leur magasin d'autorités.) On note qu'aujourd'hui les alertes de sécurité des navigateurs Web sont souvent absurdes : si on se connecte en HTTPS mais avec un certificat expiré (qui a donc été parfaitement valable), on a des alertes plus effrayantes que si on se connecte en clair !
  • Enfin, et c'est le plus gros problème, rien ne garantit qu'on obtiendra le même contenu en HTTP et en HTTPS : la plupart des serveurs HTTP permettent de configurer deux virtual host différents sur les deux ports 80 et 443. Pas question donc de jouer à ça sans une autorisation explicite du serveur.

Bref, pour le HTTP traditionnel, il semble qu'il n'y ait pas de solution.

Celle proposée par notre RFC est d'utiliser le mécanisme des services alternatifs du RFC 7838. Le serveur va indiquer (typiquement par un en-tête Alt-Svc:) qu'il est accessible par un autre mécanisme (par exemple HTTPS). Cela a également l'avantage d'éviter les problèmes de contenu mixte qui surviendraient si on avait mis la page en HTTPS mais pas tous ses contenus. Par contre, l'indication de service alternatif n'étant pas forcément bien protégée, ce mécanisme « opportuniste » reste vulnérable aux attaques actives. En revanche, ce mécanisme devrait être suffisamment simple pour être largement déployé assez vite.

Donc, maintenant, les détails concrets (section 2 du RFC). Le serveur qui accepte de servir des URL http: avec TLS annonce le service alternatif. Notez que les clients HTTP/1 n'y arriveront pas, car ils ne peuvent pas indiquer l'URL complet (avec son plan) dans la requête à un serveur d'origine (section 5.3.1 du RFC 7230). Cette spécification est donc limitée à HTTP/2 (RFC 7540). Si le client le veut bien, il va alors effectuer des requêtes chiffrées vers la nouvelle destination. S'il ne veut pas, ou si pour une raison ou pour une autre, la session TLS ne peut pas être établie, on se rabat sur du texte en clair (chose qu'on ne ferai jamais avec un URL https:).

Si le client est vraiment soucieux de son intimité et ne veut même pas que la première requête soit en clair, il peut utiliser une commande HTTP qui ne révèle pas grand'chose, comme OPTIONS (section 4.3.7 du RFC 7231).

Le certificat client ne servirait à rien dans ce chiffrement opportuniste et donc, même si on en a un, on ne doit pas l'envoyer. Par contre, le serveur doit avoir un certificat, et valide (RFC 2818) pour le service d'origine (si le service d'origine était en foo.example et que le service alternatif est en bar.example, le certificat doit indiquer au moins foo.example). Ce service ne permet donc pas de se chiffrer sans authentification, par exemple avec un certificat expiré, ou avec une AC inconnue du client, et ne résoud donc pas un des plus gros problèmes de HTTPS. Mais c'est une exigence de la section 2.1 du RFC 7838, qui exige que le renvoi à un service alternatif soit « raisonnablement » sécurisé. (Notez que cette vérification est délicate, comme l'a montré CVE-2015-0799.)

En outre, le client doit avoir fait une requête sécurisée pour le nom bien connu (RFC 5785, pour la notion de nom bien connu) /.well-known/http-opportunistic. La réponse à cette requête doit être positive, et doit être en JSON, et contenir un tableau de chaînes de caractères dont l'une doit être le nom d'origine (pour être sûr que ce serveur autorise le service alternatif, car le certificat du serveur effectivement utilisé prouve une autorisation du serveur alternatif, et la signature d'une AC, ce qu'on peut trouver insuffisant). Ce nouveau nom bien connu figure désormais dans le registre IANA.

La section 4 de notre RFC rappelle quelques trucs de sécurité :

  • L'en-tête Alt-Svc: étant envoyé sur une liaison non sécurisée, il ne faut pas s'y fier aveuglément (d'où les vérifications faites ci-dessus).
  • Certaines applications tournant sur le serveur peuvent utiliser des drôles de moyens pour déterminer si une connexion était sécurisée ou pas (par exemple en regardant le port destination). Elles pourraient faire un faux diagnostic sur les connexions utilisant le service alternatif.
  • Il est trivial pour un attaquant actif (un « Homme du Milieu ») de retirer cet en-tête, et donc de faire croire au client que le serveur n'a pas de services alternatifs. Bref, cette technique ne protège que contre les attaques passives. Ce point a été un des plus discutés à l'IETF (débat classique, vaut-il mieux uniquement la meilleure sécurité, ou bien accepter une sécurité « au mieux », surtout quand l'alternative est pas de sécurité du tout).
  • Le client ne doit pas utiliser des indicateurs qui donneraient à l'utilisateur l'impression que c'est aussi sécurisé qu'avec du « vrai » HTTPS. Donc, pas de joli cadenas fermé et vert. (C'est une réponse au problème ci-dessus.)

Apparemment, Firefox est le seul client HTTP à mettre en œuvre ce nouveau service (mais avec une syntaxe différente pour le JSON, pas encore celle du RFC). Notez que le serveur ne nécessite pas de code particulier, juste une configuration (envoyer l'en-tête Alt-Svc:, avoir le /.well-known/http-opportunistic…) Les serveurs de Cloudflare permettent ce choix.


Téléchargez le RFC 8164


L'article seul

RFC 8153: Digital Preservation Considerations for the RFC Series

Date de publication du RFC : Avril 2017
Auteur(s) du RFC : H. Flanagan (RFC Editor)
Pour information
Première rédaction de cet article le 25 avril 2017


La préservation, sur le long terme, des documents qui ne sont jamais passés par une forme papier, est un défi important de notre époque. Nous pouvons relire aujourd'hui toute la correspondance du ministère des affaires étrangères de Louix XV, pourrons-nous, dans un siècle ou deux, relire les documents numériques du vingtième siècle ? Pourrons-nous relire les RFC ? C'est le but de ce document que d'explorer les pistes permettant de donner aux RFC une meilleure chance de conservation.

Le RFC Editor (RFC 6635) est à la fois l'éditeur et l'archiviste des RFC. Les deux fonctions sont souvent contradictoires : l'éditeur voudrait utiliser les derniers gadgets pour publier des jolis trucs (multimédia, par exemple, ou contenus exécutables), l'archiviste est prudent et conservateur et voudrait des technologies simples. L'éditeur doit produire des documents clairs et lisibles. L'archiviste doit les conserver, et pour une durée potentiellement bien plus longue que les modes technologiques, durée qui peut atteindre des siècles (on est ravis, aujourd'hui, quand on retrouve les textes de lois d'un royaume depuis longtemps oublié, au fin fond de la Mésopotamie, même quand ces lois ont depuis longtemps cessé d'être applicables).

Notez que des organisations comme l'IETF produisent plein de documents (les discussions sur les listes de diffusion, par exemple), mais que ce RFC se focalise sur la préservation des RFC.

Historiquement, les RFC étaient en texte seul. Ce format avait des tas d'avantages. Simple, et auto-documenté (la seule spécification nécessaire pour le comprendre était ASCII), il convenait bien à l'archivage. Régulièrement, des naïfs demandaient que le RFC Editor passe à un format « plus moderne », en général une mode passagère, oubliée quelques années après. Le texte seul a donc tenu très longtemps, et à juste titre.

Mais la roue de l'histoire a fini par tourner et le RFC 6949 a pris acte du fait qu'on n'allait pas rester en texte seul éternellement. Le format officiel des RFC, décrit dans le RFC 7990 est désormais fondé sur XML, avec divers enrichissements comme le jeu de caractères Unicode (RFC 7997) ou les images en SVG (RFC 7996). Cela fait peser une pression plus forte sur l'archivage : si on est certain de pouvoir relire le texte brut en ASCII dans cent ans, qu'en est-il d'images SVG ? L'ancien système d'archivage des RFC ne va donc a priori pas suffire. (Le XML lui-même est relativement auto-documenté. Si on met des documents XML sous les yeux d'un programmeur qui n'en a jamais vu, il pourra probablement rétro-ingénierer l'essentiel. Ce n'est pas forcément le cas des vocabulaires qui utilisent XML, notamment le compliqué SVG.)

Le nouveau système d'archivage suivra le cadre conceptuel d'OAIS (norme ISO 14721, disponible en ligne). Sur OAIS, on peut lire la bonne introduction d'Emmanuelle Bermes. Il faut notamment distinguer deux tâches (section 1.1 de notre RFC) :

  • Préservation des bits : archiver un fichier informatique et pouvoir le ressortir des dizaines d'années après, au bit près. Cela se fait, par exemple, en recopiant régulièrement le fichier sur de nouveaux supports physiques, et en vérifiant via une somme de contrôle ou une signature que rien n'a changé. Des classiques sauvegardes, vérifiées régulièrement, suffisent donc.
  • Préservation du contenu : il ne suffit plus de stocker et de restituer les bits, il faut aussi présenter le contenu à l'utilisateur. Avoir une copie parfaite des bits d'un fichier WordPerfect de 1990 ne sert pas à grand'chose s'il n'existe plus aucun logiciel capable de lire le Wordperfect sur les machines et systèmes d'exploitation modernes. Assurer la préservation du contenu est plus complexe, et il existe plusieurs solutions, par exemple de garder une description du format (pour qu'on puisse toujours développer un outil de lecture), et/ou garder non seulement les fichiers mais aussi les outils de lecture, et tout l'environnement qui permet de les faire fonctionner.

Ceci dit, ce problème d'archivage à long terme des fichiers numériques n'est ni nouveau, ni spécifique aux RFC. Il a été largement étudié par de nombreuses organisations. On peut citer la BNF, le projet LIFE en Grande-Bretagne, ou l'étude du cycle de vie faite à la Bibliothèque du Congrès. Des processus pour maintenir sur le long terme les fichiers, avec recopies régulières et nombreuses vérifications, existent.

Les RFC bénéficient depuis un certain temps d'un mécanisme similaire de préservation des bits : les métadonnées (indispensables pour retrouver un document) sont créées et enregistrées. Les fichiers sont recopiés d'un ordinateur à l'autre au fur et à mesure que les anciennes technologies de stockage deviennent dépassées. En outre, depuis 2010, tous les RFC sont imprimés sur du papier, pour avoir « ceinture et bretelles ». Les RFC plus anciens que 2010 subissent également parfois ce traitement, mais il existe des trous (RFC perdus, ou, tout simplement, problèmes avec le droit d'auteur, avant que cette question ne soit explicitement traitée, cf. RFC 8179).

Cette copie papier s'est avérée utile au moins une fois, quand 800 RFC ont dû être été re-saisis à la main, suite à une panne informatique (et une insuffisance des sauvegardes). Un petit détail amusant au passage : le RFC Editor à une époque acceptait des documents qui n'étaient pas des RFC, et qu'il faut aussi sauvegarder, voir l'histoire antique des RFC.

Il n'y a pas actuellement de sauvegarde de l'environnement logiciel utilisé pour lire les RFC, l'idée est que cela n'est pas nécessaire : on pourra toujours lire du texte brut en ASCII dans cent ans (la preuve est qu'on n'a pas de mal à relire le RFC 1, vieux de quarante-huit ans). Le processus de sauvegarde préserve les bits, et on considère que la préservation du contenu ne pose pas de problème, avec un format aussi simple. (Par exemple, l'impression sur le papier ne garde pas les hyperliens mais ce n'est pas un problème puiqu'il n'y en a pas dans le format texte brut.)

Mais, puisque les RFC vont bientôt quitter ce format traditionnel et migrer vers un format plus riche, il faut reconsidérer la question. La section 2 de notre RFC explore en détail les conséquences de cette migration sur chaque étape du cycle de vie. Il faut désormais se pencher sur la préservation des contenus, pas seulement des bits.

Certaines caractéristiques du cycle de vie des RFC facilitent l'archivage. Ainsi, les RFC sont immuables. Même en cas d'erreur dans un RFC, il n'y a jamais de changement (au maximum, on publie un nouveau RFC, comme cela avait été fait pour le RFC 7396). Il n'y a donc pas à sauvegarder des versions successives. D'autres caractéristiques du cycle de vie des RFC compliquent l'archivage. Ainsi, ce n'est pas le RFC Editor qui décide d'approuver ou pas un RFC (RFC 5741). Il n'a donc pas le pouvoir de refuser un document selon ses critères à lui.

Le RFC Editor maintient une base de données (qui n'est pas directement accessible de l'extérieur) des RFC, avec évidemment les métadonnées associées (état, auteurs, date, DOI, liens vers les éventuels errata puisqu'on ne corrige jamais un RFC, etc). Les pages d'information sur les RFC sont automatiquement tirées de cette base (par exemple https://www.rfc-editor.org/info/rfc8153, pour ce RFC).

Les RFC citent, dans la bibliographie à la fin, des références dont certaines sont normatives (nécessaires pour comprendre le RFC, les autres étant juste « pour en savoir plus »). Idéalement, les documents ainsi référencés devraient également être archivés (s'ils ne sont pas eux-même des RFC) mais ce n'est pas le cas. Notre RFC suggère que l'utilisation de Perma.cc serait peut-être une bonne solution. C'est un mécanisme d'archivage des données extérieures, maintenu par groupe de bibliothèques juridiques de diverses universités. Pour un exemple, voici la sauvegarde Perma.cc (https://perma.cc/E7QG-TG98) de mon article sur le hackathon de l'IETF.

Dans un processus d'archivage, une étape importante est la normalisation, qui va supprimer les détails considérés comme non pertinents. Elle va permettre la préservation du contenu, en évitant de garder des variantes qui ne font que compliquer la tâche des logiciels. Par exemple, bien que XML permette d'utiliser le jeu de caractères de son choix (en l'indiquant dans la déclaration, tout au début), une bonne normalisation va tout passer en UTF-8, simplifiant la tâche du programmeur qui devra un jour, écrire ou maintenir un logiciel de lecture du XML lorsque ce format sera à moitié oublié.

Or, au cours de l'histoire des RFC, le RFC Editor a reçu plein de formats différents, y compris des RFC uniquement sur papier. Aujourd'hui, il y a au moins le format texte brut, et parfois d'autres.

Maintenant qu'il existe un format canonique officiel (celui du RFC 7991), quelles solutions pour assurer la préservation du contenu ?

  • Best effort, préserver les bits et espérer (ou compter sur les émulateurs, ce qui se fait beaucoup dans le monde du jeu vidéo vintage),
  • Préserver un format conçu pour l'archivage (PDF/A-3 étant un candidat évident - voir le RFC 7995, d'autant plus que le XML original peut être embarqué dans le document PDF),
  • Préserver le XML et tous les outils, production, test, visualisation, etc. (Ce que les mathématiciens ou les programmeurs en langages fonctionnels appeleraient une fermeture.)

La première solution, celle qui est utilisée aujourd'hui, n'est plus réaliste depuis le passage au nouveau format. Elle doit être abandonnée. La deuxième solution sauvegarde l'information dans le document, mais pas le document lui-même (et c'est embêtant que le format archivé ne soit pas le format canonique, mais uniquement un des rendus). Et l'avenir de PDF/A-3 est incertain, on n'a pas encore essayé de le lire trente ans après, et les promesses du marketing doivent être considérées avec prudence (d'autant plus qu'il y a toujours peu d'outils PDF/A, par exemple aucun logiciel pour vérifier qu'un document PDF est bien conforme à ce profil restrictif). Pour la troisième solution, cela permettrait de refaire un rendu des RFC de temps en temps, adapté aux outils qui seront modernes à ce moment. Mais c'est aussi la solution la plus chère. Si on imagine un futur où XML, HTML et PDF sont des lointains souvenirs du passé, on imagine ce que cela serait d'avoir préservé un environnement d'exécution complet, les navigateurs, les bibliothèques dont ils dépendent, le système d'exploitation et même le matériel sur lequel il tourne !

Une solution plus légère serait de faire (par exemple tous les ans) un tour d'horizon des techniques existantes et de voir s'il est encore possible, et facile, de visualiser les RFC archivés. Si ce n'est pas le cas, on pourra alors se lancer dans la tâche de regénérer des versions lisibles.

Au passage, il existe déjà des logiciels qui peuvent faciliter certains de ces activités (le RFC cite le logiciel libre de gestion d'archives ArchiveMatica).

Après cette analyse, la section 3 de notre RFC va aux recommandations : l'idée est de sauvegarder le format canonique (XML), un fichier PDF/A-3, le futur outil xml2rfc et au moins deux lecteurs PDF (qui doivent être capables d'extraire le XML embarqué). Les tâches immédiates sont donc :

  • Produire les PDF/A-3 (à l'heure de la publication de ce RFC, l'outil n'est pas encore développé) avec le XML à l'intérieur, et l'archiver,
  • Archiver le format canonique (texte seul pour les vieux RFC, XML pour les nouveaux),
  • Archiver les versions majeures des outils, notamment xml2rfc,
  • Archiver deux lecteurs PDF,
  • Avoir des partenariats avec différentes institutions compétentes pour assurer la sauvegarde des bits (c'est déjà le cas avec la bibliothèque nationale suédoise). Un guide d'évaluation de ce ces archives est ISO 16363.

La version papier, par contre, ne sera plus archivée.

Conclusion (section 4) : les RFC sont des documents importants, qui ont un intérêt pour les générations futures, et qui valent la peine qu'on fasse des efforts pour les préserver sur le long terme.


Téléchargez le RFC 8153


L'article seul

RFC des différentes séries : 0  1000  2000  3000  4000  5000  6000  7000  8000